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Abstract

Metric perturbation theory serves as a powerful tool for exploring the mathematical prop-
erties of black holes. In this work, we present a comprehensive and notationally consistent
review of the formalism and apply it to the Schwarzschild black hole, both in a covariant
framework and within a specific coordinate system. To handle the most computationally
demanding steps, we develop a dedicated script in Mathematica. Within this formalism,
we derive the Regge-Wheeler and Zerilli equations and explicitly demonstrate that their
potentials are connected through a Darboux (or Chandrasekhar) transformation. The ex-
istence of such a transformation demonstrates that the equations are isospectral, meaning
that the potentials have the same spectrum of quasinormal-mode frequencies. We extend
the Schwarzschild metric with one extra spatial dimension to construct the five-dimensional
metric of a black string. Following the methodology used in four dimensions, we examine
the presence of isospectrality in five dimensions. Our analysis reveals that the odd-parity
perturbation equations can be decoupled into two independent equations. However, due to
the large number of equations and variables, we are unable to fully decouple the even-parity
perturbation equations. As a result, it remains an open question whether the black string
spacetime exhibits isospectrality.
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1 INTRODUCTION

1 Introduction

In our everyday experience, we perceive the universe as consisting of four dimensions: three describing
space and one representing time, which together form the fabric of spacetime. Spacetime can be curved,
creating the effect we recognize as gravity, a phenomenon elegantly described by Einstein’s General
Theory of Relativity (GR). Despite its extraordinary accuracy, GR cannot currently be reconciled with
quantum theory. The search for a unifying theory, a theory of Quantum Gravity, has become a major
focus of research and is often referred to as the “holy grail” of theoretical physics. One promising
approach to merging GR and quantum theory involves rethinking our understanding of gravity itself.
Over recent decades, researchers have proposed various (sometimes unconventional) solutions to this
unification puzzle, including theories suggesting that gravity may operate in higher dimensions.

One of the earliest higher-dimensional theories of gravity was Kaluza-Klein theory, which aimed to unify
gravity and electromagnetism within a single framework. It proposed the existence of an additional
spatial dimension, bringing the total number of spacetime dimensions to five. This extra dimension,
however, would be curled up into a tiny circular shape, making it nearly impossible to detect. In this
model, the additional dimension manifests itself as an electromagnetic field [1, 2].

Kaluza-Klein theory laid the foundation for the development of (Super-)String Theory (ST). ST extends
the ideas of Kaluza-Klein theory by suggesting that spacetime has even more dimensions. To maintain
mathematical consistency, ST requires a ten-dimensional universe, consisting of nine spatial dimensions
and one temporal dimension. Similar to Kaluza-Klein theory, these extra dimensions are compactified
into minuscule, circular strings. The inclusion of additional spatial dimensions enables gravity to be
incorporated alongside the other three fundamental forces (that is, the electromagnetic, weak, and
strong forces), and in fact, ST requires GR in order to be consistent [3]. In these models, gravity can
propagate through the extra dimensions that the other forces do not interact with or do so much more
weakly. This could potentially explain why gravity is significantly weaker than the other fundamental
forces and provides a framework for unification at higher energy scales.

While ST has made significant strides toward formulating a theory of Quantum Gravity, it has some
severe shortcomings; it remains unverified experimentally and faces major mathematical and concep-
tual hurdles, such as reproducing the Standard Model of particle physics. The main experimental
challenge arises from the fact that the six extra spatial dimensions form a compact space on the order
of the Planck length, making them them far too small to be detected with current technology [3]. To
determine whether higher dimensions exist, we must therefore investigate their effect on macroscopic
objects, such as black holes.

If higher dimensions exist, black holes would also extend into these dimensions and could exhibit
properties that differ from their four-dimensional versions [4]. Some of these unique features might
even be observable in high-energy experiments through interactions with Standard Model fields [5–8].
Studying the properties of higher-dimensional black holes could thus offer valuable clues about the
validity of ST as a higher-dimensional theory of gravity.

One approach to studying the properties of black holes is through perturbation theory. A perturbation
refers to a small, sudden deformation of a black hole’s shape, which can occur when two black holes
merge or when matter falls into it. As the black hole settles back into equilibrium, it emits gravitational
waves with specific frequencies that gradually decay over time. These characteristic oscillations, known
as quasi-normal modes (QNMs), provide a unique signature of the perturbed black hole and can be
observed through gravitational wave detections [9].

Several well-established formalisms exist for describing black hole perturbations, each offering distinct
advantages depending on the specific application, such as stability analysis, gravitational wave emis-
sion, or the study of binary systems. There are numerous extensions of these formalisms accounting
for certain properties of the black hole spacetime, including rotation [10], charge [11, 12], and dimen-
sionality [13–15]. For the fundamental case of a four-dimensional Schwarzschild black hole, pioneering
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1 INTRODUCTION

contributions were made by Regge and Wheeler [16], Vishveshwara [17], Zerilli [18] and Chandrasekhar
[19, 20]. Later, Martel and Poisson [21] developed a comprehensive formalism that is covariant and
gauge-invariant, integrating and refining key results from earlier work. This thesis will employ their
formalism.

The standard method for analyzing metric perturbations in Schwarzschild spacetime involves decom-
posing the metric into two-dimensional submetrics: a Lorentzian manifold and a spherically symmetric
subspace [9]. Perturbations are introduced via a perturbing metric, which is then expanded using
spherical harmonics. This allows for the separation of the angular component and the classification of
perturbations into two distinct parities: even and odd. By solving the perturbed (vacuum) Einstein
equations in these decompositions, one finds the well-known result that they reduce to two indepen-
dent wave-like equations with a potential, each corresponding to a specific parity. The Zerilli equation
governs even-parity perturbations, while the Regge-Wheeler (RW) equation describes odd-parity per-
turbations. At first sight, these equations appear different and unrelated. Interestingly though, it can
be shown that they are in fact related and therefore share an identical spectrum of QNM frequen-
cies, a phenomenon known as isospectrality. This property was first identified by Chandrasekhar and
Detweiler [22]. Isospectrality in a given spacetime can be established by demonstrating the existence
of a mathematical transformation between even- and odd-parity perturbations, known as the Chan-
drasekhar transformation. This was recently demonstrated to be a special case of the more general
Darboux transformation by Glampedakis et al. [23].

While isospectrality holds for classical black hole spacetimes such as Schwarzschild, Reissner-Nordström
and Kerr, this generally not true for black holes in alternative theories of gravity [24]. Several studies
have reported the breaking of isospectrality in such alternative theories, with recent investigations
presented in Ref. [25–28]. However, this does not imply that extensions of GR inevitably break
isospectrality; a recent study by Cano and David [29] indicates that certain extensions of GR do, in
fact, preserve it. If isospectrality is broken, this could lead to observable effects in gravitational wave
data (for details on how this manifests, see Ref. [30, 31]). As a result, detecting such deviations could
provide valuable insights into the possible existence of alternative theories of gravity.

To assess whether ST is a viable higher-dimensional theory of gravity, we can examine whether isospec-
trality holds in ten-dimensional black holes. However, starting at such a high dimensionality is clearly
impractical. A more feasible approach is to first study lower-dimensional cases, such as five-dimensional
ST, where black holes are known as black strings. his thesis will therefore investigate isospectrality
within the black string spacetime.

The first section of this thesis provides a comprehensive and self-contained review of the theory of
metric perturbations in Schwarzschild spacetime, formulated in a way that allows for extension to
higher dimensions. Using the formalism developed by Martel and Poisson [21], we derive the odd-
and even-parity perturbation equations, reduce them to the Regge-Wheeler and Zerilli equations, and
demonstrate their isospectrality.

In the second section, we apply this formalism to the black string spacetime, following the same steps
to determine whether a similar transformation exists between odd- and even-parity perturbations. The
calculations presented in this thesis are partially carried out using three custom-developed Mathe-
matica scripts: 4d pert covariant, 4d pert coordinates and 5d pert coordinates [32].
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2 METRIC PERTURBATIONS OF THE SCHWARZSCHILD SPACETIME

2 Metric Perturbations of the Schwarzschild Spacetime

As mentioned in the introduction, there are several approaches to studying perturbations of black
hole spacetimes. In this section, we adopt the formalism of metric perturbations developed by Martel
and Poisson [9, 21]. This choice is motivated by its relatively simple and well-structured extension to
higher dimensions (at least in principle). Such an extension is essential, as working in five dimensions
introduces a greater number of metric components and corresponding equations. While other widely
used formalisms, such as the Newman-Penrose (or Geroch-Held-Penrose) approach, have been extended
to higher dimensions in recent studies [15, 33–35], they are not particularly user-friendly, making the
Martel-Poisson formalism a more practical choice for our analysis.

In this section, we derive the RW and Zerilli equations for the Schwarzschild metric and show that the
QNM frequencies in this spacetime are isospectral, carefully outlining the various steps involved in the
process. The goal of this comprehensive review is primarily to combine and present in a self-consistent
manner the information scattered throughout the literature, as intermediate calculations are seldom
included due to their complexity, despite the fact that they often contain non-trivial or subtle details.
Once this detailed analysis of the four-dimensional case is complete, we extend the procedure to the
higher-dimensional black string spacetime, following a similar approach, in Section 3.

The process of applying the formalism of metric perturbations to the Schwarzschild spacetime is
outlined in Figure 1, reflecting the structure of this thesis. In the following section, we will show how to
decompose a four-dimensional metric into two-dimensional submetrics, separating the (t, r)- and (θ, ϕ)-
coordinates. Section 2.2 focuses on applying a linear perturbation to the Schwarzschild metric gµν in
the form of a perturbing metric γµν . We make explicit in Section 2.3 the covariant derivatives of each
metric, discuss the commutation relations, and provide some useful identities that will be important
for the subsequent analysis. Then, in Section 2.4 we derive the linearized curvature quantities, such as
the Christoffel symbols, Ricci tensor, and Einstein tensor. By setting each component of the linearized
Ricci tensor to zero, we obtain a system of linearized vacuum Einstein equations. We specifically need
the Einstein tensors for the even-parity sector, as will be explained in Section 2.8.2. In Section 2.5, we
expand the perturbing metric γµν in terms of spherical harmonics, separating it into an odd- and even-
parity sector. Section 2.6 will discuss the gauge freedom for each parity and demonstrate how applying
the Regge-Wheeler gauge can eliminate some of them. We then insert the gauge-fixed expressions for
the perturbing metric—expanded into spherical harmonics and separated by parity—into the vacuum
Einstein equations. The resulting system of coupled PDEs can, remarkably, be decoupled, yielding the
RW equation for the odd-parity sector (Section 2.7) and the Zerilli equation for the even-parity sector
(Section 2.8).

We will discuss two methods for decoupling each system: (1) by inserting the Schwarzschild coordi-
nates into the covariant vacuum Einstein equations and solving the system as a set of coupled partial
differential equations (PDEs), or (2) by rewriting the system in its covariant form and introducing the
covariant RW and Zerilli functions (a method developed in [9]). Both approaches will be worked out
in detail for completeness.

Terminology and notation in the literature are frequently a source of confusion. While many authors use
the terms axial or magnetic to refer to odd-parity perturbations, and polar or electric for even-parity
ones, we will avoid using these terms. Additionally, we have chosen a slightly different notation from
the Martel-Poisson formalism to minimize potential confusion with overlapping symbols. A detailed
correspondence between this thesis and their work is provided in Appendix A. Throughout this thesis
we will adopt natural units (c = GN = 1) and use the mostly-plus convention for the Minkowski metric
(−+++).
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2 METRIC PERTURBATIONS OF THE SCHWARZSCHILD SPACETIME

Schwarschild metric gµν

Perturbation gpµν = gµν + γµν δΓλ
µν δRµν

M2 × S2 split

gpab = gab + γab
gpaB = γaB
gpAB = r2ΩAB + γAB

δΓa
bc, δΓ

A
bc

δΓa
bC , δΓ

A
bC

δΓa
BC , δΓ

A
BC

δRab

δRaB

δRAB

Spherical harmonic
decomposition

γab =
∑

ℓ,m f ℓm
ab (t, r)Y ℓm

γaA =
∑

ℓ,m

{
jℓma (t, r)Y ℓm

A + hℓm
a (t, r)Xℓm

A

}
γAB =

∑
ℓ,m

{
r2Kℓm(t, r)ΩABY

ℓm + r2Gℓm(t, r)Y ℓm
AB + hℓm

2 (t, r)Xℓm
AB

}

Split even/odd parity

γ
(odd)
ab = 0

γ
(odd)
aA =

∑
ℓ,m hℓm

a (t, r)Xℓm
A

γ
(odd)
AB =

∑
ℓ,m hℓm

2 (t, r)Xℓm
AB

(3 DOF)

γ
(even)
ab =

∑
ℓ,m f ℓm

ab (t, r)Y ℓm

γ
(even)
aA =

∑
ℓ,m jℓma (t, r)Y ℓm

A

γ
(even)
AB = r2

∑
ℓ,m

{
Kℓm(t, r)ΩABY

ℓm +Gℓm(t, r)Y ℓm
AB

}
(7 DOF)

Apply
Regge-Wheeler gauge1

γ̃
(odd)
ab , γ̃

(odd)
aB , γ̃

(odd)
AB

(2 DOF)
γ̃
(even)
ab , γ̃

(even)
aB , γ̃

(even)
AB

(4 DOF)

System of perturbed
Ricci components

(vacuum Einstein eqs.)

δR
(odd)
ab = 0

δR
(odd)
aB = 0

δR
(odd)
AB = 0

δR
(even)
ab = 0

δR
(even)
aB = 0

δR
(even)
AB = 0

Decouple
(1) As system of PDEs

(2) Covariantly

ΨRW

(1 DOF)
ΨZM

(1 DOF)

Master equation Zerilli equation Regge-Wheeler equation

odd
even

Chandrasekhar

transform

Figure 1: Flowchart visualizing the steps involved in the formalism of metric perturbations of the
Schwarzschild spacetime. The number of degrees of freedom (DOF) are indicated in the last steps.
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2 METRIC PERTURBATIONS OF THE SCHWARZSCHILD SPACETIME

2.1 M2 × S2 decomposition

Due to the spherical symmetry of the Schwarzschild spacetime, it is possible to decompose the metric
into radial and angular components, allowing us to treat the perturbations of each part separately. In
this context, the line element can be expressed as

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2(dθ2 + sin2 θdϕ2) := gabdx

adxb + r2ΩABdx
AdxB , (1)

where

f(r) := 1− 2M

r
(2)

and M the mass of the black hole. In this decomposition, the four-dimensional manifold M4 will be
represented as a product of two-dimensional submanifolds, that is, M4 = M2 × S2. Here M2 refers
to the submanifold spanned by the t and r coordinates, and S2 is the submanifold of the two-sphere
spanned by the angular coordinates θ and ϕ. The lowercase Latin indices are used to represent t and
r,

xa = (t, r), a = 0, 1, (3)

while the capital Latin indices run over the angular coordinates,

xA = (θ, ϕ), A = 2, 3. (4)

The four-dimensional metric gµν has coordinates indicated by Greek indices, i.e. xµ = (x0, x1, x2, x3) =
(t, r, θ, ϕ), and its components are given by

gµν =

[
gab 0
0 gAB

]
=

[
gab 0
0 r2ΩAB

]
, gµν =

[
gab 0
0 gAB

]
=

[
gab 0
0 1

r2Ω
AB

]
. (5)

Here ΩAB represents the metric on the unit two-sphere:

dΩ2 = dθ2 + sin2 θdϕ2 = ΩABdx
AdxB . (6)

The lowercase Latin indices are lowered and raised using the metric gab and its inverse gab, respectively.
Similarly, the capital Latin indices are raised and lowered using ΩAB and ΩAB . Since both gab and
ΩAB are symmetric matrices, we will not worry about the spaces in the index placement and write,
for example, gba instead of g b

a and ΩB
A instead of Ω B

A .

2.2 Linear perturbations

Suppose now that the metric gµν is linearly perturbed by a small quantity γµν (i.e. |γµν | ≪ 1), such
that the perturbed metric gpµν and its inverse take the form2

gpµν =gµν + γµν , (8)

gpµν =gµν − γµν . (9)

The perturbing metric γµν and its inverse account for perturbations in both the (t, r)-components
and the (θ, ϕ)-components. We make no assumptions regarding the nature of the perturbation. In
particular, we allow for the perturbing metric to have cross terms:

γµν =

[
γab γaB
γAb γAB

]
, γµν =

[
γab 1

r2 γ
aB

1
r2 γ

Ab 1
r4 γ

AB

]
. (10)

1In Section 2.6 it will become clear that we are allowed to replace the mode variables by their gauge-invariant versions.
The tilde “ ˜ ” is then dropped for notational brevity.

2There is a minus sign in the inverse perturbed metric since

gpµνg
pµλ := δλν , (7)

which holds to first order in γµν only if we take the above definitions.

8



2 METRIC PERTURBATIONS OF THE SCHWARZSCHILD SPACETIME

Just like the background metric gµν , the perturbing metric is symmetric (γµν = γνµ). The components
of the inverse perturbing metric are obtained by raising the indices of γµν with the background metric.
For example:

gabgABγbA = gab
1

r2
ΩABγbA =

1

r2
γaB . (11)

Clearly, we have

4gpab = gab + γab,
4gpaB = γaB ,
4gpAB = r2ΩAB + γAB ,

(12)

4gp ab = gab − γab,

4gp aB = − 1

r2
γaB ,

4gpAB =
1

r2
ΩAB − 1

r4
γAB .

(13)

where the superscript “ 4 ” indicates that the metric belongs to M4. This way we avoid confusion
between the ab-component of gµν and gab, a component of the metric of M2. Since both submanifolds
are two-dimensional, a superscript “ 2 ” would be ineffective. We therefore write quantities defined
with respect to gab and ΩAB without this additional index.

2.3 Basic definitions

In this formalism, where linear perturbations are introduced and the metric is split, we can derive
the key quantities needed for the study of metric perturbations. We begin by listing the covariant
derivatives associated with each (sub-)metric, followed by the relevant curvature quantities (Christoffel
symbols, Riemann tensor, Ricci tensor, and Ricci scalar). We discuss the proper way to commute
covariant derivatives of the submanifolds and provide useful relations that help to simplify calculations
in Schwarzschild coordinates.

2.3.1 Covariant derivatives

Covariant differentiation is defined independently on each manifold, requiring us to define separate
covariant derivative for each metric. We denote these covariant derivatives as summarized in Table 1.

Manifold M4 = M2 × S2 M2 S2

Metric gµν gab ΩAB

Covariant derivative ∇µ Da DA

Commutes with - DA Da

Table 1: A list of the symbols with which we indicate the manifolds and their respective metrics and
covariant derivatives. By definition, the covariant derivatives are compatible with their respective
metrics, meaning Dagbc = 0 and DAΩBC = 0.

The covariant derivative Da commutes with DA because ΩAB does not depend on t or r, and gab is
independent of θ or ϕ. Furthermore, any quantity that depends only on xa is covariantly constant with
respect to the Christoffel symbols associated with Da, and quantities depending solely only on xA are
covariantly constant with respect to the Christoffel symbols of DA. This means for example that

DAr := 0,

DAgab := 0,

DaΩAB := 0.

(14)
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2 METRIC PERTURBATIONS OF THE SCHWARZSCHILD SPACETIME

2.3.2 Christoffel symbols

The Christoffel symbols belonging to ∇µ are 4Γλ
µν . It is straightforward to show using the definition

of the Christoffel symbols,

Γλ
µν :=

1

2
gλα [∂µgαν + ∂νgαµ − ∂αgµν ] , (15)

and the components of the full metric, Eq. (5), that the only non-zero components are

4Γa
bc = Γa

bc,
4Γa

BC = −rraΩBC ,

4ΓA
Bc =

rc
r
δAB ,

4ΓA
BC = ΓA

BC .

(16)

Note that Christoffel symbols with lowercase Latin indices always belong to Da, and ones with capital
Latin indices belong to DA. In Schwarzschild coordinates, the Christoffel symbols are explicitly

4Γt
rt = −4Γr

rr =
M

r2
f(r)−1,

4Γr
tt =

M

r2
f(r),

4Γϕ
θϕ = cot θ,

4Γr
θθ =

1

sin2 θ
4Γr

ϕϕ = −rf(r),

4Γθ
θr =

1

sin2 θ
4Γθ

ϕϕ = 4Γϕ
ϕr =

1

r
.

(17)

2.3.3 Riemann tensors, Ricci tensors and Ricci scalars

The non-zero components of the full Riemann tensor (4Rµνρσ), Ricci tensor (
4Rµν) and the Ricci scalar

(4R) are given in [36], but we will not make use of them in this thesis. We do however make use of
the Riemann tensors of the submanifolds3:

Rabcd =
R

d(d− 1)
(gacgbd − gadgbc), (18)

RABCD = ΩACΩBD − ΩADΩBC . (19)

Here, R is the Ricci scalar of the submanifold Md. For the submanifold M2, the Ricci tensor is

R =
4M

r3
, (20)

such that

Rabcd =
2M

r3
(gacgbd − gadgbc). (21)

We should remark that (18) is only valid for spacetimes with constant curvature. This form of the
Riemann tensor follows from the fact that a double contraction of its indices in a general dimension d
should yield the Ricci scalar:

gacgbdRabcd = Rgacgbd(gacgbd − gadgbc) = R(d2 − d). (22)

Clearly we have to divide by d(d− 1) to obtain the Ricci scalar.

3These Riemann tensors are not the components of the Riemann tensor belonging to gµν , but belong to the submetrics
gab and ΩAB .
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Note that in general for a two-dimensional manifold

Rab =
R

2
gab, (23)

based on symmetry arguments4 (the Riemann tensor has only one independent component in two
dimensions). In higher dimensions this relation does not hold, since the Riemann tensor will have
more independent components.

2.3.4 Commuting covariant derivatives of the submanifolds

It is important to note that Da and DA do not commute with themselves. When we commute two
covariant derivatives belonging to the same submanifold, a Riemann tensor term will appear (which is,
indeed, a way to define curvature) [9]. This is readily seen by considering the action of a commutator
of covariant derivatives of M2 on a tensor X (of arbitrary rank) in the absence of torsion [37]:

[Da,Db]X
c1···ck

d1···dl
=+ Rc1

mabX
mc2···ck

d1···dl
+ Rc2

mabX
c1m···ck

d1···dl
+ . . .

− Rm
d1abX

c1···ck
md2···dl

− Rm
d2abX

c1···ck
d1m···dl

− . . . .
(24)

An extra term appears for each additional index on X.

In this thesis, we will be concerned only with vectors and rank-2 tensors. When commuting two
covariant derivatives acting on a co-vector va, (24) tells us that

DaDbvc − DbDavc = −Rd
cabvd

= R d
abc vd, (25)

while for a rank-2 tensor tab, the commutation gives

DaDbtcd − DbDatcd = −Rm
cab tmd − Rm

dab tcm

= R m
abc tmd + R m

abd tcm. (26)

Here, we have utilized the symmetries of the Riemann tensor to arrange the indices conveniently. When
commuting covariant derivatives belonging to S2, we obtain a similar expression:

DADBvC −DBDAvC = R D
ABC vD, (27)

DADBtCD −DBDAtCD = R M
ABC tMD +R M

ABD tCM . (28)

2.3.5 Useful relations

To maintain covariance in our calculations, we introduce the covector ra := Dar = ∂ar = (0, 1), which
enables us to express the function f(r) in a covariant manner as

rara = grr = f(r). (29)

On the other hand, when working in Schwarzschild coordinates we can make use of the fact that

Darb =
M

r2
gab, (30)

□r =
2M

r2
. (31)

The four-dimensional d’Alembertian operator is defined as □ := gabDaDb. Note that relation (30)
only holds in four dimensions.

4The same formula can also be obtained by contracting the first and third indices of the Riemann tensor, Eq. (18),
and using d = 2. This however only holds if the spacetime has constant curvature. Equation (21) is generally true for a
two-dimensional manifold. Coincidentally, the two are the same.
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2.4 Linearized curvature quantities

In this section, we derive the perturbed curvature quantities. We begin by linearizing the Christof-
fel symbols, which allows us to compute the linearized Riemann tensor, Ricci tensor, Ricci scalar,
and Einstein tensor. Subsequently, we evaluate the Ricci and Einstein tensors within the M2 × S2-
decomposition.

The four-dimensional vacuum Einstein equations5 are given by

Gµν = Rµν − 1

2
gµνR = 0. (32)

A contraction with gµν shows that R = 0 and hence

Rµν = 0. (33)

This means that perturbations of the background spacetime are fully described by the components of
the perturbed Ricci tensor,

δRµν = 0. (34)

As we will see in Section 2.8, it is more practical to work with the full Einstein tensors in the even-parity
sector and use

δGµν = 0. (35)

We will first derive the covariant form of the perturbed Ricci tensor and Einstein tensor in terms of
γµν . To this end, we first need the perturbed Christoffel symbols:

pΓλ
µν = 4Γλ

µν + δΓλ
µν . (36)

The linearized connection is [16]

δΓλ
µν =

1

2
gλα (∇µγαν +∇νγαµ −∇αγµν) . (37)

We omit the superscript “ 4 ” on linearized quantities like δΓλ
µν , as we understand that the perturbation

is always carried out on the full background spacetime. The components of δΓλ
µν are calculated using

the first-order covariant derivatives of a rank-2 tensor in Eqs. (306) in Appendix C, and are given by

δΓa
bc = Ca

bc,

δΓa
bC =

1

2
gac (DbγcC +DCγcb − DcγbC)−

1

r
rbγ

a
C ,

δΓa
BC =

1

2
(DBγ

a
C +DCγ

a
B − DaγBC)− rrbΩBCγ

ab,

δΓA
bc =

1

2r2
(Dbγ

A
c + Dcγ

A
b −DAγbc),

δΓA
bC =

1

2r2
(Dbγ

A
C +DCγ

A
b −DAγbC)−

1

r3
rbγ

A
C ,

δΓA
BC =

1

r2
CA

BC +
1

r
raΩBCγ

Aa,

(38)

where

Ca
bc :=

1

2
(Dcγ

a
b + Dbγ

a
c − Daγbc) , (39)

CA
BC :=

1

2

(
DCγ

A
B +DBγ

A
C −DAγBC

)
. (40)

5In the calculations that will follow, we could include a source term in the form of a stress-energy tensor Tµν .
This would complicate the calculations significantly. For a clear account of how to include such a source term in the
calculations, see [21].
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Similarly, the Ricci tensor of the perturbed spacetime is

pRµν = 4Rµν + δRµν . (41)

A general expression for the linearly perturbed Riemann tensor is6 [38]

δR λ
µνρ = −2∇[µ

(
δΓλ

ν]ρ

)
, (44)

and the linearized Ricci tensor is simply its contraction of the upper and middle-lower indices,

δRµν := −2∇[ν

(
δΓλ

λ]µ

)
, (45)

and the linearized Ricci scalar is

δ (gµνRµν) = (δgµν)Rµν + gµνδRµν (46)

= gµνδRµν (47)

where we used that the Ricci tensor of the background vanishes in a vacuum spacetime. We can now
express the perturbed curvature quantities in terms of the perturbing metric using Eq. (37):

δR λ
µνρ = −∇[µ∇ν]γ

λ
ρ −∇[µ∇|ρ|γ

λ
ν] +∇[µ∇λγν]ρ, (48)

δRµν = −1

2
4□γµν − 1

2
∇µ∇νγ

λ
λ +∇λ∇(µγ

λ
ν), (49)

δR = −4□γµ
µ +∇µ∇νγ

µν , (50)

δGµν = −1

2
4□γµν +∇λ∇(µγ

λ
ν) −

1

2
∇ν∇µγ

λ
λ − 1

2
gµν

(
∇ρ∇λγλρ −□γλ

λ

)
, (51)

where we denoted the antisymmetrization and symmetrization with square brackets and round brackets
respectively, and vertical bars | · | indicate that we exclude the index · from the (anti-)symmetrization
process. We identify the four-dimensional d’Alembertian operator as 4□ := ∇µ∇µ.

6The antisymmetrization of a rank-2 tensor is defined as

T[µν] :=
1

2
(Tµν − Tνµ), (42)

and the symmetrization as

T(µν) :=
1

2
(Tµν + Tνµ). (43)
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By evaluating Eqs. (49) and (51) in the M2 × S2-split, making use of the Mathematica script
4d pert covariant.nb, we are able to reproduce the results in Appendix D of Martel and Poisson
[21]. The components of the linearized Ricci tensor are found to be:

δRab = DmCm
ab +

2

r
rmCm

ab −
1

2
DaDbγ

m
m − 1

2r2
DMDMγab +

1

2r2
DM

(
Daγ

M
b + Dbγ

M
a

)
− 1

2r2
DaDbγ

M
M +

1

2r3
(
raDbγ

M
M + rbDaγ

M
M

)
− 1

r4
(rarb − rDarb) γ

M
M , (52)

δRaB =
1

2
DB

(
Dmγm

a − Daγ
m
m +

1

r
raγ

m
m

)
− 1

2
(□γaB − DmDaγ

m
B )

− 1

r
(raDmγm

B − rmDaγ
m
B )− 1

r2
(rarm + rDarm) γm

B +
1

2r2
DM (DBγaM −DMγaB)

− 1

2r2
Da

(
DMγM

B −DBγ
M
M

)
− 1

r3
ra
(
DMγM

B −DBγ
M
M

)
, (53)

δRAB = ΩAB

[
rraDb

(
γab − 1

2
gabγm

m

)
+ (rarb + rDaDbr) γ

ab

]
− 1

2
DADBγ

a
a

+
1

2
Da (DAγ

a
B +DBγ

a
A) +

1

r
raΩABDMγaM − 1

2
□γAB +

1

r2
DMCM

AB

− 1

2r2
DADBγ

M
M +

1

r
raDa

(
γAB − 1

2
ΩABγ

M
M

)
− 2

r2
rara

(
γAB − 1

2
ΩABγ

M
M

)
. (54)

The components of δGµν are:

δGab =
1

2
gab□γc

c −
1

2
DbDaγ

c
c +

2

r
rcD(aγb)c +

1

r
rc
(
gabDcγ

d
d − Dcγab

)
+ DcD(aγ

c
b) −

1

2
□γab

− gab

(
1

r
(Ddrc)γ

cd +
2

r
rcDdγ

cd +
1

r2
rcrdγ

cd − 1

2
DdDcγ

cd

)
+

1

2r2
DADA (gabγ

c
c − γab)

+
1

r3

(
2r(aDAγ

A
b) − gabr

cDAγ
A
c

)
+DAD(aγ

A
b) −

1

r2
gabDADcγ

cA

+
1

2
gab

(
□γA

A − 1

r4
DBDAγ

M
M +

1

r2
DBDBγ

A
A

)
+

r2 − 1

r4
rarbγ

A
A

+
1

2r3
gab

(
□r − 1

r
rcrc

)
γA
A +

2r2 + 1

2r3
gabr

cDcγ
A
A − 1

r
r(aDb)γ

A
A − 1

2
DbDaγ

A
A , (55)

δGaB =
1

2r
raDBγ

b
b −DBD[aγ

b
b] +

1− r2

r2
rbr(aγb)B +

r2 + 1

2r
rbDaγbB − 1

r
(Dbra)γ

b
B

− 1

r
raDbγ

b
B +

1

2
DbDaγ

b
B +

1− r

2r
(□r)γaB − 1

2
□γaB +

1

2
DADBγ

A
a

− 1

2r2
DADAγaB +

1− r2

r3
raDAγ

A
B + DaD[Aγ

A
B], (56)

δGAB = rraΩAB

(
1

2
Daγ

b
b − Dbγ

b
a

)
− 1

2
r2ΩABDbDaγ

ab +
1

2
ΩAB

(
r2□γa

a +DMDMγa
a

)
− 1

2
DBDAγ

a
a + DaD(Aγ

a
B) − ΩABDMDbγ

bM +
r2 − 1

r
ra
(
D(AγB)a +ΩABDMγM

a

)
− 2raraγAB − 1

2r2
raraΩABγ

M
M +

1− r2

r
(□r)γAB +

1

2r
(□r)ΩABγ

M
M +

1

r
raDaγAB

+
r2 + 1

2r
ΩABr

aDaγ
M
M − 1

2
□γAB +

1

2
r2ΩAB□γM

M +DMD(Aγ
M
B) −

1

2
DBDAγ

M
M

− 1

2r2
(DMDMγAB +ΩABDNDMγMN ) +

1

2
ΩABD

MDMγN
N . (57)

We can verify these equations by performing the evaluation manually, which is done by substituting
Eqs. (38) into Eq. (45). As pointed out by Spiers et al. [39], in doing so we must proceed with caution,
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especially with terms that involve contractions. These terms should first be expanded into a d + 2
form. Only after this expansion can we assign the free indices to either M2 or S2. For illustration,
consider the following contraction:

gµν∇µγνρ = gab∇aγbρ +
1

r2
ΩAB∇AγBρ

Only now are we are allowed to choose ρ = c:

gµν∇µγνc = gabDaγbc +
1

r2
ΩABDAγBc +

2

r
raγac −

1

r3
rcγ

A
A .

2.5 Decomposition into spherical harmonics

So far, we have not yet taken advantage of the spherical symmetry of the Schwarzschild metric. This
symmetry naturally lends itself to use a special class of functions, spherical harmonics, which are defined
on S2 and have well-known properties. Spherical harmonics come in three versions; scalar, vector and
tensor harmonics [21]. This decomposition introduces two parities – even and odd – which describe
the behaviour of the functions under a coordinate transformation on S2. A detailed discussion of the
properties of these harmonics can be found in Appendix B. Decomposing the metric perturbations into
spherical harmonics offers a key advantage: the spherical symmetry of the background ensures that
modes with different parity do not mix, allowing the perturbation equations to be derived independently
for each parity [9].

The perturbing metric components are decomposed as follows:

γab =
∑
ℓ,m

f ℓm
ab (t, r)Y ℓm,

γaA =
∑
ℓ,m

{
jℓma (t, r)Y ℓm

A + hℓm
a (t, r)Xℓm

A

}
,

γAB =
∑
ℓ,m

{
r2Kℓm(t, r)ΩABY

ℓm + r2Gℓm(t, r)Y ℓm
AB + hℓm

2 (t, r)Xℓm
AB

}
,

(58)

where

f ℓm
ab =

(
f(r)Hℓm

0 (t, r) Hℓm
1 (t, r)

Hℓm
1 (t, r) 1

f(r)H
ℓm
2 (t, r)

)
, (59)

jℓma =

(
jℓm0 (t, r)
jℓm1 (t, r)

)
, (60)

hℓm
a =

(
hℓm
0 (t, r)

hℓm
1 (t, r)

)
. (61)

The even-parity spherical harmonics are Y ℓm, Y ℓm
A , ΩABY

ℓm and Y ℓm
AB . The odd-parity spherical

harmonics are Xℓm
A and Xℓm

AB . As a result, there are seven even-parity modes (Hℓm
0 , Hℓm

1 , Hℓm
2 , jℓm0 ,

jℓm1 , Kℓm and Gℓm) and three odd-parity modes (hℓm
0 , hℓm

1 and hℓm
2 ), which are all functions of xa,

meaning they are defined only on M2 [40]. We restrict our work to ℓ ≥ 2, because ℓ = 0 and ℓ = 1
are non-radiating and require special treatment [9].

At this point, Eqs. (58) can be inserted into Eqs. (52)-(54) and (55)-(57). However, before proceeding
with this substitution, we first take advantage of the gauge freedom inherent to our theory.
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2.6 Gauge transformations

In the spherical harmonic decomposition of our four-dimensional spacetime, there are ten mode com-
ponents: hℓm

0 , hℓm
1 , hℓm

2 , Hℓm
0 , Hℓm

1 , Hℓm
2 , jℓm0 , jℓm1 , Kℓm and Gℓm. By exploiting the gauge freedom of

our theory, we can eliminate three even-parity components and one odd-parity component [9]. In this
section, we demonstrate how this simplification is achieved by imposing the so-called Regge-Wheeler
(RW) gauge.

In general, we can find the gauge degrees of freedom (DOF) by considering an infinitesimal coordinate
transformation generated by a vector field Ξµ (the gauge vector):

xµ → xµ − Ξµ. (62)

It is well known that under such coordinate transformation, the change of the perturbation tensor field
is the Lie derivative of that tensor field with respect to Ξµ [41]:

γµν −→ γ′
µν := γµν + LΞgµν = γµν + gλν∇µΞ

λ + gµλ∇νΞ
λ = γµν + 2∇(µΞν). (63)

In the formalism of the metric split, the gauge transformations are generated by a dual vector field
Ξµ = (Ξa,ΞA). This means that the components of the perturbation field transform as

γab −→ γ′
ab = γab − 2D(aΞb), (64)

γaB −→ γ′
aB = γaB −∇aΞB −∇BΞa = γaB − DaΞB −DBΞa +

2

r
raΞB , (65)

γAB −→ γ′
AB = γAB − 2D(AΞB) − 2rrcΩABΞc, (66)

where we have made use of Eqs. (304) from Appendix C. It can be shown that Eqs. (52)-(57) are all
invariant under these transformations when the background Ricci tensor 4Rµν vanishes [21] (as they
should given the Stewart-Walker lemma [40]).

The gauge vector Ξµ can also be divided into vectors with even and odd parity:

Ξa =
∑
ℓ,m

ξℓma Y ℓm,

ΞA =
∑
ℓ,m

{
ξℓm2 Y ℓm

A + ξℓm3 Xℓm
A

}
,

(67)

such that the even-parity modes are ξℓm0 , ξℓm1 and ξℓm2 , and the odd-parity mode is ξℓm3 . These
are all functions of xa. We will now examine how the perturbing metric transforms under a gauge
transformation in both the even and odd parity sectors.

2.6.1 Odd-parity gauge transformations

By the division of Eq. (67), the odd-parity gauge transformations are generated by the gauge vector

Ξ
(odd)
µ = (0,Ξ

(odd)
A ), with

Ξ
(odd)
A =

∑
ℓ,m

ξℓm3 Xℓm
A . (68)

Since Ξ
(odd)
µ contains one arbitrary function (ξℓm3 ), it can be used to gauge fix one of the odd parity

metric perturbations. By substituting Eq. (68) into Eqs. (65) and (66), we find that the odd-parity
sector of the perturbing metric transforms as follows:

γaB −→ γ′
aB = hℓm

a Xℓm
B − Daξ

ℓm
3 Xℓm

B +
2

r
rAξ

ℓm
3 Xℓm

B := h′ℓm
a Xℓm

B ,

γAB −→ γ′
AB = hℓm

2 Xℓm
AB − 2ξℓm3 D(AX

ℓm
B) = hℓm

2 Xℓm
AB − 2ξℓm3 Xℓm

AB := h′ℓm
2 Xℓm

AB .
(69)
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This means that

hℓm
a −→ h′ℓm

a = hℓm
a − Daξ

ℓm
3 +

2

r
raξ

ℓm
3 , (70)

hℓm
2 −→ h′ℓm

2 = hℓm
2 − 2ξℓm3 . (71)

Gauge-invariant quantities are derived by taking a linear combination of these transformation equa-
tions, ensuring that the terms involving ξℓm3 on the right-hand-side are eliminated. We denote these
gauge-invariant quantities with a tilde “ ˜ ”:

h̃ℓm
a = hℓm

a − 1

2
Dah

ℓm
2 +

1

r
rah

ℓm
2 . (72)

Transforming these two quantities according to (70) indeed shows that they are unchanged.

Eq. (71) demonstrates that it is always possible to select a gauge where hℓm
2 = 0 by choosing ξℓm3 =

1
2h

ℓm
2 . This particular choice is referred to as the RW gauge. Setting hℓm

2 = 0 in Eq. (72) leads to

h̃ℓm
0 = hℓm

0 , (73)

h̃ℓm
1 = hℓm

1 , (74)

indicating that, within the RW gauge, the modes hℓm
0 and hℓm

1 are equal to their gauge-invariant
counterparts. Consequently, we can replace hℓm

0 and hℓm
1 by their gauge-invariant versions to recover

gauge invariance of the final results7 [9].

2.6.2 Even-parity gauge transformations

The even-parity gauge transformations are generated by the gauge vector Ξ
(even)
µ = (Ξ

(even)
a ,Ξ

(even)
A ),

with

Ξ(even)
a =

∑
ℓ,m

ξℓma Y ℓm,

Ξ
(even)
A =

∑
ℓ,m

ξℓm2 Y ℓm
A .

(75)

This means that the even-parity gauge vector contains three arbitrary functions (ξℓm0 , ξℓm1 and ξℓm2 )
that can be used to fix three components of the metric perturbations. Similarly as in the odd-parity
case, we substitute Eqs. (75) into Eqs. (64), (65) and (66) to see that the even-parity modes transform
as

f ℓm
ab −→ f ′ℓm

ab = f ℓm
ab − 2D(aξ

ℓm
b) , (76)

jℓma −→ j′ℓma = jℓma − ξℓma − Daξ
ℓm
2 +

2

r
raξ

ℓm
2 , (77)

Kℓm −→ K ′ℓm = Kℓm +
ℓ(ℓ+ 1)

r2
ξℓm2 − 2

r
raξℓma , (78)

Gℓm −→ G′ℓm = Gℓm − 2

r2
ξℓm2 . (79)

The gauge-invariant quantities are

f̃ ℓm
ab =f ℓm

ab − D(a

(
jℓmb) − r2

2
Db)G

ℓm

)
, (80)

K̃ℓm =Kℓm +
ℓ(ℓ+ 1)

2
Gℓm − 2

r
ra
(
jℓma − r2

2
DaG

ℓm

)
. (81)

7This is of course only possible if the final results themselves are gauge invariant. In a vacuum background spacetime,
the linearized vacuum Einstein equations are gauge invariant by the Stewart-Walker lemma, we are allowed to replace
h0 and h1 by h̃0 and h̃1 and call the final result gauge invariant [40].
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By choosing ξℓm2 = r2

2 G
ℓm and ξℓma = jℓma − r2

2 DaG
ℓm, we can set jℓma = 0 and Gℓm = 0. This

corresponds to the RW gauge in the even-parity sector. From Eqs. (80) and (81), it then follows that
in the RW gauge,

f̃ ℓm
ab = f ℓm

ab , (82)

K̃ℓm = Kℓm. (83)

With this knowledge, we are ready to compute the RW and Zerilli equations. From this point onward,
we will omit the summation over ℓ and m on all the relevant quantities mentioned above for notational
convenience (it will remain implicit). Additionally, we will drop the overhead tilde on the mode
variables, since we can always substitute their gauge-invariant versions to recover gauge invariance of
the final results.

2.7 Regge-Wheeler equation

The odd-parity sector of Eq. (58) in the RW gauge is

γ
(odd)
ab = 0,

γ
(odd)
aA = ha(t, r)XA,

γ
(odd)
AB = 0.

(84)

To derive the RW equation, we first need to express Eqs. (52)-(54) in terms of the odd-parity harmonics
from (84). A detailed calculation in terms of the dimension d is given in Appendix D. We now focus
on the results for d = 2 and simplify the equations as much as possible. To this extent, we make use
of the fact that

−1

r
hbDaD

br = −1

r

M

r2

(
h0

h1

)
= −M

r3
ha (85)

to simplify δR
(odd)
aB and obtain

δR
(odd)
ab = 0,

δR
(odd)
aB = 0 =

[
−□ha + DaD

bhb +
2

r

(
rbDahb − raD

bhb

)
− 2

r2
rar

bhb +
ℓ(ℓ+ 1)

r2
ha

]
XB ,

δR
(odd)
AB = 0 = [Daha]XAB .

(86)

We have simply equated each component to zero to arrive at the vacuum Einstein equations, resulting
in two coupled equations in the variables ha. There are in principle two ways to decouple them:

1. we could either evaluate both equations in a specific coordinate system and solve them as a
system of coupled PDEs (the brute force way),

2. or we can introduce two functions that decouple the system naturally in its covariant form (the
clever way).

For the sake of completeness, we will work out both approaches, starting with method (1). The advan-
tage of this approach is that the algebraic manipulations required are conceptually simple. However,
as the equations tend to be lengthy, the calculations can be cumbersome, especially in the even-parity
case where there are more equations and variables. Therefore, we will also explore method (2). The
advantage of this approach is that it significantly reduces the length of the expressions we have to
deal with. Covariant expressions also provide a clearer view of how the equations will behave when
we extend them to higher dimensions. We will see later in this thesis however that also the covariant
method is ponderous in the even-parity sector.
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2.7.1 Decoupling in coordinates

We begin developing method (1) by evaluating Eqs. (86) in Schwarzschild coordinates. This evaluation
is carried out using theMathematica script 4d pert coordinates.nb, which produces the following
results:

δR
(odd)
tA = 0 =

1

2

[
f(r)

(
−∂2

rh0 +

[
∂r +

2

r

]
∂th1

)
+

(
ℓ(ℓ+ 1)

r2
− 4M

r3

)
h0

]
XA,

δR
(odd)
rA = 0 =

1

2

[
− 1

f(r)

[
∂r −

2

r

]
∂th0 +

(ℓ− 1)(ℓ+ 2)

r2
h1 +

1

f(r)
∂2
t h1

]
XA,

δR
(odd)
AB = 0 =

[
− 1

f(r)
∂th0 + ∂r [f(r)h1]

]
XAB .

(87)

It can be proven that the first equation is a consequence of the other two, and therefore does not
provide any new information [40]. System (87) can be rewritten into a single equation for h1. To
demonstrate this, we first decouple the angular part from the equations, which is in this case trivial8.
We can then rewrite the third equation as

∂th0 = f(r)∂r [f(r)h1] , (88)

and substitute it in the second equation, which gives

− 1

f(r)
∂2
t h1 +

1

f(r)

(
∂r −

2

r

)
(f(r)∂r [f(r)h1])−

(ℓ− 1)(ℓ+ 2)

r2
h1 = 0. (89)

This result can be written more compactly by introducing a clever choice of function; the Regge-Wheeler
function

ΨRW :=
f(r)

r
h1. (90)

Eq. (89) can then be rewritten into the Regge-Wheeler equation, a wave equation with an associated
potential:

(□− VRW)ΨRW = 0, (91)

VRW :=
ℓ(ℓ+ 1)

r2
− 6M

r3
. (92)

The d’Alembertian operator on M2 in Schwarzschild coordinates is given by

□ΨRW : =
1√
−g

∂a
(√

−g gab∂bΨRW

)
= ∂r(g

rr∂rΨRW) + ∂t(g
tt∂tΨRW)

=

(
− 1

f(r)
∂2
t + f(r)∂2

r +
2M

r2
∂r

)
ΨRW, (93)

where g := detgab = −1 is the determinant of gab.

The RW equation can be expressed as a one-dimensional Schrödinger-like equation. This is achieved
by transforming from the radial coordinate r to the tortoise coordinate r∗, assuming an exponential
time dependence. Specifically, we define the transformation as

dr

dr∗
:= f(r), (94)

8The angular part has no dependency on the other coordinates (and vice versa), so it can be set to zero independently,
making this part trivially satisfied. If a source term were present on the right-hand side, removing the spherical harmonic
component of the field equations would be less trivial. In that case, the angular part is separated by integrating over
the two-sphere and using orthonormality relations obeyed by the spherical harmonics, as discussed in [9].
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such that

∂2
r∗ =

∂

∂r∗

(
dr

dr∗
∂

∂r

)
=

dr

dr∗
∂

∂r

(
f(r)

∂

∂r

)
= f(r)2∂2

r + f(r)[∂rf(r)]∂r. (95)

Assuming the RW function has a time dependence of the form e−iωt, we can write

ΨRW(t, r) = ΨRW(r)e−iωt, (96)

such that (91) can be written as

d2ΨRW

dr∗2
+
[
ω2 − Vrw(r

∗)
]
ΨRW = 0. (97)

Note that the associated potential differs from (92) by a factor of f(r):

Vrw(r) := f(r)VRW(r). (98)

This concludes the decoupling of the odd-parity equations in coordinates. The RW function in the
form of Eq. (97) is needed to prove isospectrality in Section 2.9.1.

2.7.2 Decoupling covariantly

The system can be decoupled covariantly by introducing the covariant form of the RW function. This
approach ensures that the equations remain in a form that is manifestly covariant, allowing for a more
general analysis without needing to rely on specific choice of coordinates. The covariant RW function
is9

ΨRW :=
1

r
raha. (99)

Contracting the second equation in (86) with r−1ra, using Eq. (29) and using Daha = 0 (which follows
from the third equation in (86)), we obtain

0 =
1

r
ra
(
−□ha +

2

r
rbDahb

)
− 1

r3
[2f(r)− ℓ(ℓ+ 1)] raha. (100)

Our goal is to express this equation in terms of the covariant RW function. For the first term this can
be done by bringing r−1ra over the d’Alembertian operator towards ha:

1

r
ra□ha = gbcDc

(
1

r
raDbha

)
− gbc(Dbha)Dc

(
1

r
ra
)

= gbcDcDb

(
1

r
raha

)
+

2

r2
rarbDbha −

2

r
(Dbra)Dbha −

2

r3
rarbrbha

+
2

r2
rb(D

bra)ha +
1

r2
ra(□r)ha −

1

r
(□ra)ha

= □

(
1

r
raha

)
− 2

r
(Dbra)Dbha −

1

r3
rarbrbha +

1

r2
rb(D

bra)ha

+
1

r2
ra(□r)ha −

1

r
(□ra)ha +

2

r
rbDb

(
1

r
raha

)
= □ΨRW +

2

r
rbDbΨRW +

4M

r3
ΨRW. (101)

In the second step we worked out all derivatives, in the third step we used that

2

r2
rarbDbha −

2

r3
rarbrbha +

2

r2
rb(D

bra)ha =
2

r
rbDb

(
1

r
raha

)
, (102)

9Some authors (like Regge and Wheeler [16] themselves) define this function with a negative sign, which is purely
conventional. We choose to adopt the definition without a minus sign as in Martel and Poisson [21].
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and in the last step we inserted Eq. (99) and used Eq. (30) to show that

−2

r
(Dbra)Dbha = −2M

r3
Daha︸ ︷︷ ︸
=0

. (103)

We rewrite the second term in (100) as

2

r2
rarbDahb =

2

r

(
raDa

(
1

r
rbhb

)
− 1

r
ra(Dar

b)hb +
1

r2
rarbrahb

)
=

2

r

(
raDaΨRW − M

r3
raha +

f(r)

r2
raha

)
=

2

r
raDaΨRW +

2

r2

(
1− 3M

r

)
ΨRW, (104)

where we made use of relations (29) and (30) to go from the first to the second line. Substituting
results (101) and (104) into Eq. (100) gives us exactly Eq. (91) with the correct potential.

This concludes the discussion of odd-parity perturbations of the Schwarzschild spacetime. It is evident
that both methods require roughly the same amount of effort to derive the RW equation. In the next
section, we will apply both approaches to the even-parity sector, aiming to obtain the Zerilli equation.
This process will be considerably more challenging due to the additional variables and perturbation
equations involved.

2.8 Zerilli equation

The approach to finding the Zerilli equation slightly differs from the one we adopted in the odd-parity
sector. In Section 2.8.1, where we decouple the even-parity perturbation equations in coordinates, we
make use of the components of δRµν in the vacuum Einstein equations, similarly to the odd-parity case.
However, for covariant decoupling, which we explore in Section 2.8.2, we work with the components of
δGµν . The latter allows us to closely follow the calculations in Martel’s Section 2.5.1 [9] and facilitate
direct comparison with his results.

To derive the Zerilli equation, we first express Eqs. (52)-(54) in terms of the even-parity harmonics
from (58) in the RW gauge, that is, in terms of

γ
(even)
ab = fab(t, r)Y,

γ
(even)
aA = 0,

γ
(even)
AB = r2K(t, r)ΩABY.

(105)

An explicit calculation is relegated to Appendix D. We find that the resulting vacuum Einstein equa-
tions are
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δR
(even)
ab = 0 =

[
1

2
DbDmfm

a +
4M

r3
(fba − gbaf

m
m ) +

1

2
DaDmfm

b − 1

2
□fab

+
1

r
rm (Dbf

m
a + Daf

m
b − Dmfab)−

1

2
DaDbf

m
m +

ℓ(ℓ+ 1)

2r2
fab

− 1

r
rbDaK − 1

r
raDbK − DaDbK

]
Y,

δR
(even)
aB = 0 =

1

2

[
Dbf

b
a − Daf

b
b +

1

r
raf

b
b − DaK

]
YB ,

δR
(even)
AB = 0 =

[
rraDbf

ab − 1

2
rrbDbf

m
m + rarbf

ab + rDarbf
ab − 1

2
□(r2K)

+
1

2
ℓ(ℓ+ 1)K +

1

4
ℓ(ℓ+ 1)fa

a

]
ΩABY − 1

2
fa
aYAB .

(106)

From the third equation, we can see that the terms multiplying ΩABY and YAB have to be zero
individually (ΩABY and YAB are by definition orthogonal). This means that from the latter we obtain
a condition on the trace of fab:

0 = fa
a = Tr(fab) = −H0 +H2 −→ H0 = H2. (107)

This allows us to eliminate fa
a when working covariantly, or to remove either H0 or H2 when working

in coordinates.

2.8.1 Decoupling in coordinates

In this section, we decouple the even-parity perturbation equations according to the method described
by Zerilli10 [43]. Similarly to the odd-parity sector, we start by evaluating the non-zero components of
Eqs. (106) in Schwarzschild coordinates using the script 4d pert coordinates.nb. Extracting the
spherical harmonic functions and imposing the trace condition, we obtain a system of coupled PDEs:

0 = − 1

f(r)
∂2
tK +

M

r2
∂rK − 1

2f(r)
∂2
tH0 −

f(r)

2
∂2
rH0 −

1

r
∂rH0 +

ℓ(ℓ+ 1)

2r2
H0

+
2r − 3M

r2f(r)
∂tH1 + ∂t∂rH1,

0 = −r − 3M

r2f(r)
∂tK − ∂t∂rK +

1

r
∂tH0 +

ℓ(ℓ+ 1)

2r2
H1,

0 = −f(r)∂2
rK +

1

2f(r)
∂2
tH0 +

f(r)

2
∂2
rH0 +

1

r
∂rH0 +

ℓ(ℓ+ 1)

2r2
H0 −

M

r2f(r)
∂tH1

− ∂t∂rH1 −
2r − 3M

r2
∂rK,

0 = ∂tK + ∂tH0 − f(r)∂rH1 −
2M

r2
H1,

0 = ∂rK − ∂rH0 −
2M

r2f(r)
H0 +

1

f(r)
∂tH1,

0 =
1

f(r)
∂2
tK − f(r)∂2

rK +
6M − 4r

r2
∂rK +

(ℓ+ 2)(ℓ− 1)

r2
K +

2

r
f(r)∂rH0

+
2

r2
H0 −

2

r
∂tH1.

(108)

10Special thanks to my fellow master student Tom van der Steen who pointed out how to derive the algebraic identity
and how to decouple the system from Eqs. (123) onwards [42].
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The first three equations follow from evaluating δR
(even)
tt = 0, δR

(even)
tr = 0 and δR

(even)
rr = 0 respec-

tively, the fourth and fifth equations follows from δR
(even)
tB = 0 and δR

(even)
rB = 0, and the last equation

follows from the first part of δR
(even)
AB = 0.

The odd-parity sector in coordinates consists of three coupled equations, given by Eqs. (87), while
the even-parity sector consists of seven (Eqs. (108) and the trace condition). This means there
are ten coupled perturbation equations in total, but only six gauge invariant variables. The total
system is however not overdetermined; the Bianchi identities provide four additional constraints (three
even-parity and one odd-parity) on the perturbation equations, reducing the number of independent
equations to six. The Bianchi identities will not be utilized in this thesis. For reference, they are
provided in [9].

Eqs. (108) reveals that the even-parity sector comprises three first-order PDEs and three second-order
PDEs in three unknowns. As noted by Regge and Wheeler [16], the first-order equations alone do
not provide sufficient information to solve the system. The non-trivial information contained in the
second-order equations can be encapsulated in an “algebraic relation”11, which is a third-order equation
involving only time derivatives. With this algebraic relation, any of the second-order equations can
be derived from the first-order ones. The algebraic relation plays a crucial role in reformulating the
system into the Zerilli equation. Following the method introduced by Zerilli [43], the objective is to
eliminate all r-derivatives from the second-order equations using the first-order ones, such that we
obtain a single PDE that involves only time derivatives.

The first step in obtaining the algebraic relation is to observe the similarity between the first and third
equations of (108); adding them gives

− 1

f(r)
∂2
tK − f(r)∂2

rK − 2

r
f(r)∂rK +

ℓ(ℓ+ 1)

r2
H0 +

2

r
∂tH1 = 0. (109)

Subtracting from this the last equation of (108) eliminates the term −∂2
rK:

− 2

f(r)
∂2
tK +

2(r −M)

r2
∂rK − (ℓ+ 2)(ℓ− 1)

r2
K

− 2

r
f(r)∂rH0 +

(ℓ+ 2)(ℓ− 1)

r2
H0 +

4

r
∂tH1 = 0. (110)

We take a time derivative of this equation to obtain

− 2

f(r)
∂3
tK +

2(r −M)

r2
∂t∂rK − (ℓ+ 2)(ℓ− 1)

r2
∂tK

− 2

r
f(r)∂t∂rH0 +

(ℓ+ 2)(ℓ− 1)

r2
∂tH0 +

4

r
∂2
tH1 = 0. (111)

Now note that the second equation in (108) can be written as

∂t∂rK = −r − 3M

r2f(r)
∂tK +

1

r
∂tH0 +

ℓ(ℓ+ 1)

2r2
H1, (112)

which we substitute in Eq. (111), yielding

− 2

f(r)
∂3
tK − 2(r −M)(r − 3M)

r4f(r)
∂tK +

2(r −M)

r3
∂tH0 +

(ℓ+ 2)(ℓ− 1)

r2
∂tH0

− (ℓ+ 2)(ℓ− 1)

r2
∂tK − 2

r
f(r)∂t∂rH0 +

4

r
∂2
tH1 +

r −M

r2
ℓ(ℓ+ 1)

r2
H1 = 0. (113)

11Regge and Wheeler worked in the Fourier domain, assuming a time dependence of the form e−iωt for the variables
H0, H1 and K which effectively replaces the time derivatives with prefactors of −iωt. This gives the resulting equations
an algebraic appearance.
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Taking a time derivative of the fourth equation in (108) gives

∂t∂rK − ∂t∂rH0 −
2M

r2f(r)
∂tH0 +

1

f(r)
∂2
tH1 = 0. (114)

Substituting Eq. (112) into Eq. (114) gives

∂t∂rH0 = −r − 3M

r2f(r)
∂tK +

r − 4M

r2f(r)
∂tH0 +

1

f(r)
∂2
tH1 +

ℓ(ℓ+ 1)

2r2
H1. (115)

Finally, inserting Eq. (115) into Eq. (113) yields the desired algebraic relation:

2

f(r)
∂3
tK +

[
(ℓ+ 2)(ℓ− 1)

r2
+

2M(r − 3M)

r4f(r)

]
∂tK

−
[
(ℓ+ 2)(ℓ− 1)

r2
+

6M

r3

]
∂tH0 +

2

r
∂2
tH1 −

ℓ(ℓ+ 1)

r4
MH1 = 0. (116)

We now have a set of four equations – comprising the first-order equations from (108) and the algebraic
identity (116) – that contain all the information of the system. For clarity, we reiterate them:

0 = −r − 3M

r2f(r)
∂tK − ∂t∂rK +

1

r
∂tH0 +

ℓ(ℓ+ 1)

2r2
H1,

0 = ∂tK + ∂tH0 − f(r)∂rH1 −
2M

r2
H1,

0 = ∂rK − ∂rH0 −
2M

r2
1

f(r)
H0 +

1

f(r)
∂tH1,

0 =
2

f(r)
∂3
tK +

[
(ℓ+ 2)(ℓ− 1)

r2
+

2M(r − 3M)

r4f(r)

]
∂tK

−
[
(ℓ+ 2)(ℓ− 1)

r2
+

6M

r3

]
∂tH0 +

2

r
∂2
tH1 −

ℓ(ℓ+ 1)

r4
MH1.

(117)

It can be shown that third equation in (117) is consistent with the others, so that all information is
stored in the first, second and fourth equations12 [18]. It remains to show that Eqs. (117) can be
decoupled and written as the Zerilli equation.

We solve the algebraic identity for ∂tH0 and substitute it into the first and second equations of (117).
This results in a system of two coupled equations:

∂t∂rK = α0(r)∂
3
tK + α1(r)∂tK + β0(r)∂

2
tH1 + β1(r)H1,

∂rH1 = γ0(r)∂
3
tK + γ1(r)∂tK + δ0(r)∂

2
tH1 + δ1(r)H1,

(118)

12It can be shown that Eqs. (117) are consistent with the results of Zerilli [18] if one assumes the following time
dependence for the modes:

H0(t, r) = H0(r)e
−iωt,

H1(t, r) = H1(r)e
−iωt,

K(t, r) = K(r)e−iωt.
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where the Greek-lettered functions are explicitly given by

α0(r) =

[
f(r)

2

(
(ℓ+ 2)(ℓ− 1)

r
+

6M

r2

)]−1

,

α1(r) = −r − 3M

r2f(r)
+

[
(ℓ+ 2)(ℓ− 1)

r
+

6M

r2

]−1 [
(ℓ+ 2)(ℓ− 1)

r2
+

2M(r − 3M)

r4f(r)

]
,

β0(r) = −2

[
(ℓ+ 2)(ℓ− 1) +

6M

r

]−1

,

β1(r) = −M

r5
ℓ(ℓ+ 1)

[
(ℓ+ 2)(ℓ− 1)

r2
+

6M

r3

]−1

+
ℓ(ℓ+ 1)

2r2
,

γ0(r) =
2

f(r)2

[
(ℓ+ 2)(ℓ− 1)

r2
+

6M

r3

]−1

,

γ1(r) =
1

f(r)

(
1 +

[
(ℓ+ 2)(ℓ− 1)

r2
+

6M

r3

]−1 [
(ℓ+ 2)(ℓ− 1)

r2
+

2M(r − 3M)

r4f(r)

])
,

δ0(r) = − 2

f(r)

[
(ℓ+ 2)(ℓ− 1)

r
+

6M

r2

]−1

,

δ1(r) = − 1

f(r)

[
ℓ(ℓ+ 1)

r4
+

2M

r2

]
.

(119)

We introduce the new variable P := ∂tK and rewrite Eqs. (118) as

∂rP =
[
α0(r)∂

2
t + α1(r)

]
P +

[
β0(r)∂

2
t + β1(r)

]
H1,

∂rH1 =
[
γ0(r)∂

2
t + γ1(r)

]
P +

[
δ0(r)∂

2
t + δ1(r)

]
H1.

(120)

Next, we define the transformation

P = p(r)P̂ + q(r)Ĥ1,

H1 = v(r)P̂ + w(r)Ĥ1,
(121)

imposing that

dP̂

dr∗
= Ĥ1,

dĤ1

dr∗
=

d2P̂

dr∗2
=
[
V (r∗) + ∂2

t

]
P̂ ,

dr

dr∗
:= f(r). (122)

Here, r∗ is the usual tortoise coordinate. The r-derivative of Eqs. (121) is

∂rP =
dp(r)

dr
P̂ + p(r)∂rP̂ +

dq(r)

dr
Ĥ1 + q(r)∂rĤ1

=
dp(r)

dr
P̂ +

p(r)

f(r)
Ĥ1 +

dq(r)

dr
Ĥ1 +

q(r)

f(r)

[
V (r∗) + ∂2

t

]
P̂ ,

∂rH1 =
dv(r)

dr
P̂ + v(r)∂rP̂ +

dw(r)

dr
Ĥ1 + w(r)∂rĤ1

=
dv(r)

dr
P̂ +

v(r)

f(r)
Ĥ1 +

dw(r)

dr
Ĥ1 +

w(r)

f(r)

[
V (r∗) + ∂2

t

]
P̂ .

(123)

Equating these two expressions to (120) and collect all terms that multiply ∂2
t P̂ , P̂ and Ĥ1 on the left-
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and right-hand-side yields a system of eight equations:

α0(r)p(r) + β0(r)v(r) =
1

f(r)
q(r),

α1(r)p(r) + β1(r)v(r) =
dp(r)

dr
+

1

f(r)
q(r)V (r∗),

α0(r)q(r) + β0(r)w(r) = 0,

α1(r)q(r) + β1(r)w(r) =
dq(r)

dr
+

1

f(r)
p(r),

γ0(r)p(r) + δ0(r)v(r) =
1

f(r)
w(r),

γ1(r)p(r) + δ1(r)v(r) =
dv(r)

dr
+

1

f(r)
w(r)V (r∗),

γ0(r)q(r) + δ0(r)w(r) = 0,

γ1(r)q(r) + δ1(r)w(r) =
dw(r)

dr
+

1

f(r)
v(r).

(124)

This system can be solved for the functions p(r), q(r), v(r), w(r) and V (r∗). The results are

p(r) =
λ(λ+ 1)r2 + 3M(λr + 2M)

r2(λr + 3M)
, (125)

q(r) = 1, (126)

v(r) =
λr2 − 3λMr − 3M2

rf(r)(λr + 3M)
, (127)

w(r) =
r

f(r)
, (128)

V (r∗) = 2f(r)
λ2(λ+ 1)r3 + 3λ2Mr2 + 9M2(λr +M)

r3(λr + 3M)2
, (129)

where we defined

λ :=
(ℓ+ 2)(ℓ− 1)

2
. (130)

By virtue of transformation (122), the variable P̂ satisfies the Zerilli equation:

d2P̂

dr∗2
=
[
V (r∗) + ∂2

t

]
P̂ . (131)

An expression for P̂ is found by reversing Eqs. (121); we isolate Ĥ1 from the second equation and P̂
from the first, insert the expression for Ĥ1 into the expression for P̂ and obtain

P̂ =

(
p(r)− q(r)v(r)

w(r)

)−1(
P − q(r)

w(r)
H1

)
(132)

=
r2

λr + 3M

[
∂tK − f(r)

r
H1

]
. (133)

Clearly, this implies that in terms of P̂ , Eq. (131) is still a third-order differential equation in t. We
prefer it in the form of a second-order equation. To this extent, we first substitute for H1 from the
first equation in (117), which gives

P̂ =
r2

λr + 3M

[
∂tK − 2r

ℓ(ℓ+ 1)

(
r − 3M

r2
∂tK + f(r)∂t∂rK − f(r)

r
∂tH0

)]
. (134)
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Defining the Zerilli-Moncrief (ZM) function via

P̂ := ∂tΨZM (135)

implies that also ΨZM satisfies the Zerilli equation,

d2ΨZM

dr∗2
=
[
Vzm(r

∗) + ∂2
t

]
ΨZM, (136)

and (134) shows that ΨZM is in this case given by

ΨZM =
r2

λr + 3M

[
K − 2r

ℓ(ℓ+ 1)

(
r − 3M

r2
K + f(r)∂rK − f(r)

r
H0

)]
(137)

=
r

(λ+ 1)(λr + 3M)

[
(λr + 3M)K − r2f(r)∂rK + rf(r)H2

]
(138)

(note that H0 = H2). The corresponding potential is

Vzm(r
∗) := V (r∗) = 2f(r)

λ2(λ+ 1)r3 + 3λ2Mr2 + 9M2(λr +M)

r3(λr + 3M)2
. (139)

Transforming back from r∗ to r, we see that we obtain the form of the Zerilli equation we were looking
for:

(□− VZM)ΨZM = 0, (140)

with

VZM(r) :=
1

f(r)
Vzm(r

∗). (141)

2.8.2 Decoupling covariantly

We have seen that the even-parity system can be reduced to a single wave equation through a series of
manipulations of the linearized vacuum Einstein equations in coordinates. We will show in this section
that the same results are obtained when rewriting the system in its covariant form and decoupling it
by introducing a specially tailored function, namely the covariant ZM function,

ΨZM :=
r

λ+ 1

[
K +

v

Λ

]
, (142)

where

v := rarbfab − rraDaK, (143)

Λ(r) := λ+
3M

r
. (144)

In order to follow the calculations in Martel’s work [9], it is more convenient to use the perturbed
Einstein tensors rather than the Ricci tensors13. Explicit expressions for the Einstein tensors are
provided in Appendix D. The vacuum Einstein equations are obtained by equating each component of

13Although in vacuum it suffices to compute only the perturbed Ricci tensors for the vacuum Einstein equations,
using the Einstein tensors offers the additional advantage of generality, as it allows for the inclusion of a source term.
However, this is not our primary motivation; given that the covariant calculations involve many tedious and non-trivial
manipulations, we aim to stay as close as possible to Martel’s methodology, which necessitates working with the linearized
Einstein tensors.
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δGµν to zero and splitting off the spherical harmonics:

0 = Qab = DcD(bf
c
a) −

1

2
gabDcDdf

cd − 1

2
DaDbf

c
c − 1

2
(□fab − gab□f c

c )

+
2

r
rc

(
D(bf

c
a) − gabDdf

cd
)
− rc

r

(
Dcfab − gabDcf

d
d

)
+

ℓ(ℓ+ 1)

2r2
fab

− 1

r2
gabr

crdfcd −
1

r
gab(Dcrd)f

cd − ℓ(ℓ+ 1)

2r2
gabf

c
c − DaDbK

+ gab□K − 2

r
r(aDb)K +

3

r
gabr

cDcK − (ℓ+ 2)(ℓ− 1)

2r2
gabK, (145)

0 = Qa = Dbf
b
a − Daf

b
b +

ra
r
f b
b − DaK, (146)

0 = Q
Z
= □fa

a − DaDbf
ab − 2

r
rbDaf

a
b +

ra

r
Daf

b
b − ℓ(ℓ+ 1)

2r2
fa
a +

2

r
raDaK +□K, (147)

0 = Q
\
= fa

a . (148)

We retain the components of Qµν , which in [9] indicate source terms, as labels on the equations (even
though they vanish in our vacuum spacetime). Since from QAB = 0 two equations follow, they are

labelled Q
Z
and Q

\
. We also renamed QaA to Qa as there is no capital index on the right-hand-side

of Eq. (146).

Note that upon inserting the trace condition, Eq. (148), into Eq. (146) gives

Dbf
b
a = DaK. (149)

Substituting this and the trace condition into Eq. (147) shows that the latter is consistent with the
other equations and therefore does not contain any additional information. The only extra information
originating from QAB = 0 is therefore the trace condition, Eq. (148).

(145) can be slightly simplified by making use of Eq. (30) to rewrite the term

−1

r
gab(Dcrd)f

cd = −M

r3
gabf

c
c . (150)

Using this simplification and substituting the trace condition into Eqs. (145)-(147) results in the
system

0 = Qab = DcD(bf
c
a) −

1

2
gabDdDcf

cd − 1

2
□fab +

2

r
rc
(
D(bfa)c − gabDdf

d
c

)
− rc

r
Dcfab +

λ+ 1

r2
fab −

1

r2
gabr

crdfcd − DaDbK − gab□K

− 2

r
r(aDb)K +

3

r
rcgabDcK − λ

r2
gabK, (151)

0 = Qa = Dbf
b
a − DaK, (152)

0 = Q
Z
= −DaDbf

ab − 2

r
raDbf

ab +□K +
2

r
raDaK. (153)

By performing clever manipulations, Eqs. (151)-(153) can be transformed into a set of three differential
equations involving only K and the scalar field v. This system can then be decoupled by introducing
the ZM function.

We start by taking the trace of Eq. (151). Making use of Eq. (152), we obtain

0 = Qa
a := gabQab = □K − 2λ

r2
K − 2

r2
v, (154)
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which is the first equation of our new system. The second and third equations we seek are found by
forming clever combinations of Eq. (151). Martel does not provide an explanation for the choice of
these combinations, but we assume he was granted divine insight. We start by forming the combination

f(r)Qa
a − rarbQab = 0. (155)

For the first term we simply substitute Eq. (154). The second term can be simplified right away by
using a clever trick. We can linearize the Ricci tensor of the unperturbed background (M2) as

δRab = δ

(
R

2
gab

)
=

δR

2
gab +

R

2
δgab

=
δR

2
gab +

R

2
γab (156)

where we used Eq. (23) in the first line and δgab := γab in the third. Inserting expressions (49) for
the linearized Ricci tensor and (50) for the Ricci scalar in (156), expanding in spherical harmonics and
using the trace condition yields

DcD(bf
c
a) −

1

2
□fab −

1

2
gabDcDdf

cd =
R

2
fab =

2M

r3
fab. (157)

We use this expression to replace the first three terms in Eq. (145). The result is substituted in (155)
and after tedious rewriting we obtain

0 = f(r)Qa
a − rarbQab = −rarb

r
(rcDcfab − rDaDbK)− λ+ 2

r2
rarbfab

+
3

r
f(r)raDaK − λ

r2
f(r)K. (158)

Further manipulation of this equation requires us to rewrite

rarbrcDcfab = rcDc

(
rarbfab

)
− 2rcra(Dcr

b)fab

= rcDc(v + rraDaK)− 2M

r2
(v + rraDaK)

= raDav −
2M

r2
v + rrarbDaDbK +

(
1− 3M

r

)
raDaK, (159)

where we used relation (30) and the definition of v to go from the first to the second line. Substituting
Eq. (159) in Eq. (158) shows we have arrived at an equation only in terms of K and v,

0 = f(r)Qa
a − rarbQab =− 1

r
raDav −

1

r2

(
λ+ 2− 2M

r

)
v − Λ

r
raDaK − λ

r2
f(r)K. (160)

This is the second equation of our new system.

Deriving the third equation requires most effort. It is obtained from the combination

2

r
rarbQab + rbDbQ

a
a = 0. (161)

For the first term we use Eq. (151), while for the second term we use Eq. (154). A tedious algebraic
exercise shows us that

2

r
rarbQab + rbDbQ

a
a = 0 =

2

r
rarbDcDaf

c
b − f(r)

r
DaDbf

ab − 1

r
rarb□fab −

4

r2
f(r)raDbf

b
a

+
2

r3
(λ+ 2f(r))rarbfab +

2

r
f(r)□K + raDa (□K)

− 2

r2

(
λ− M

r

)
raDaK +

2λ

r3
f(r)K. (162)
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Eq. (162) can be further simplified by rewriting the first, third and seventh terms. For this we need
the following results:

• The first term is rewritten by commuting the covariant derivatives and using Eq. (21) and Eq.
(152):

2

r
rarbDcDaf

c
b =

2

r
rarb

(
DaDcf

c
b + R d

cab f c
d + R c

ca df
d
b

)
=

2

r
rarbDaDbK +

8M

r4
rarbfab. (163)

• The third term is rewritten using

rarb□fab = rarbgcdDdDcfab

= gcdDd

(
rarbDcfab

)
− gcd(Ddr

a)rbDcfab − gcdra(Ddr
b)Dcfab

= gcdDdDc

(
rarbfab

)
− Dd

(
(Ddra)rbfab

)
− Dd

(
ra(Ddrb)fab

)
− (Dcra)rbDcfab − ra(Dcrb)Dcfab

= □(rarbfab)− Dc

[
((Dcra)rb + (Dcrb)ra)fab

]
− 2(Dcra)rbDcfab

= □(rarbfab)− 2(DcD
cra)rbfab − 2(Dcra)(Dcr

b)fab − 4(Dcra)rbDcfab

= □(rarbfab) +
4M

r3
rarbfab −

4M

r2
raDbf

b
a

= □v +
4M

r3
v + r□ (raDaK) + 2rarbDaDbK +

4M

r2
raDaK, (164)

where we used relation (30) in going from the third to the fourth line. In the last step we inserted
the definition of v and made use of the fact that

□ (rraDaK) = DbDb(rr
aDaK)

= rDbDb(r
aDaK) + rbDb(r

aDaK) + Db(rbr
aDaK)

= r□(raDaK) + rb(Dbr
a)DaK + 2rarbDaDbK + (Dbrb)r

aDaK + rb(D
bra)DaK

= r□(raDaK) + 2rarbDaDbK +
4M

r2
raDaK. (165)

• Finally, the seventh term can be expressed as

raDa (□K) = gbcraDaDcDbK

= gbcra
(
DcDaDbK + R d

acb DdK
)

= gbcDcDb (r
aDaK)− gbcDc ((Dbr

a)DaK)− gbc(Dcr
a)DaDbK − 2M

r3
raDaK

= □ (raDaK)− 2(Dbra)DaDbK

= □ (raDaK)− 2M

r2
□K, (166)

where we again used relation (30) in the last step.

Substituting these results into (162) and using the definition of v, we obtain the third equation of our
new system:

0 =
2

r
rarbQab + rbDbQ

a
a =− 1

r
□v +

2

r3

[
λ+ 2

(
1− M

r

)]
v +

1

r

(
1− 4M

r

)
□K

+
6M

r3
raDaK +

2λ

r3
f(r)K. (167)
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The perturbation equations, (145)-(148), have now been reformulated as a system of three equations
in terms of the two variables K and v:

0 = □K − 2λ

r2
K − 2

r2
v,

0 = −1

r
raDav −

1

r2

(
λ+ 2− 2M

r

)
v − Λ

r
raDaK − λ

r2
f(r)K,

0 = −1

r
□v +

2

r3

[
λ+ 2

(
1− M

r

)]
v +

1

r

(
1− 4M

r

)
□K +

6M

r3
raDaK +

2λ

r3
f(r)K.

(168)

We eliminate14 v in favour of ΨZM:

0 = □K +
6M

r3
K − 2Λ(λ+ 1)

r3
ΨZM,

0 = −Λ(λ+ 1)

r2
raDaΨZM − λ+ 1

r3

[
λ(λ+ 1) +

3M

r
λ+

6M2

r2

]
ΨZM +

Λ(λ+ 1)

r2
K,

0 = −Λ(λ+ 1)

r2
□ΨZM +

2(λ+ 1)

r3

(
λ+

6M

r

)
raDaΨZM

+
2(λ+ 1)

r4

[
λ(λ+ 1) +

M

r
(4λ− 3) + 18

M2

r2

]
ΨZM

+
1

r

(
λ+ 1− M

r

)
□K − 2

r3

(
λ(λ+ 1) +

3M

r
(λ+ 1) +

3M2

r2

)
K.

(169)

These three equations can, miraculously, be rewritten into a single wave equation by isolating □K from
the first equation and K from the second, and substituting both results into the third. The resulting
equation is the Zerilli equation,

(□− VZM)ΨZM = 0, (170)

where

VZM(r) =
1

r2Λ2

[
2λ2(1 + Λ) +

18M2

r2

(
λ+

M

r

)]
. (171)

This potential exactly matches the one we derived in coordinates (but is written in a slightly different
form).

2.9 The Chandrasekhar/Darboux transformation

In Section 2.7 and 2.8, we have demonstrated a remarkable feature of the Schwarzschild spacetime: the
complex systems of perturbation equations can be decoupled using a single function for each parity,
namely ΨRW and ΨZM, and written as two independent wave equations. It now remains to show that
the RW equation and the Zerilli equation are related by a specific type of transformation.

This relationship is commonly referred to as the Chandrasekhar transformation, named after its dis-
coverer. In his work [19], Chandrasekhar however failed to realize that the transformation he derived is
actually a specific instance of the more general concept of a Darboux transformation (DT). A DT is a
broader notion that is applied to many areas of physics, allowing one to relate the solutions of second-
order ordinary differential equations that are written in canonical form (that is, without first-order
derivatives). In the context of black hole perturbation theory, the very existence of a DT between the
odd- and even-parity master equations implies that, in such a spacetime, even and odd perturbations
are isospectral [23].

In the following subsection we show explicitly that the RW and Zerilli equations can be related by
a DT. Subsequently, in subsection 2.9.2, we demonstrate that the existence of a DT directly implies

14We have the freedom to eliminate either v or K from the system, but we choose to remove v.
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isospectrality. This section follows the approach outlined in the work of Glampedakis et al. [23] and
Chandrasekhar and Detweiler [22].

2.9.1 The relation between the RW and Zerilli equations

DTs in general relate two differential equations of the form

y′′(x) + [α− V1(x)]y(x) = 0,

Y ′′(x) + [α− V2(x)]Y (x) = 0,
(172)

with eigenvalue α, potentials V1(x) and V2(x), and the prime indicating differentiation with respect to
the variable x. The DT between these equations is given by the linear relation

Y = y′ + a(x)y, (173)

connecting their solutions. Differentiating Eq. (173) twice with respect to x and substituting Eqs.
(172) and (173) for y′ and y′′ yields

Y ′′ = (α− 2a′ − V1)Y + (a2 − a′ + α− V1)
′y = 0. (174)

Equating this to the second differential equation in (172) shows that we obtain two constraints,

V2 = 2a′ + V1, (175)

(a2 − a′ + α− V1)
′ = 0 → a2 − a′ + α− V1 = C, (176)

with C a constant. Combining these constraints yields two equations that completely determine the
transformation:

a =
(2α− V1 − V2)

′

2(V1 − V2)
, (177)

a′ = −1

2
(V1 − V2). (178)

In the context of this thesis, the analogues of (172) are the Schrödinger-like form of the RW and Zerilli
equations, which we will reiterate:

d2ΨRW

dr∗2
+
[
ω2 − Vrw(r

∗)
]
ΨRW = 0, (179)

d2ΨZM

dr∗2
+
[
ω2 − Vzm(r

∗)
]
ΨZM = 0. (180)

We identify the eigenvalue α = ω2, V1 = Vrw and V2 = Vzm. Moreover, the variable x = r∗, such that
∂x = f(r)∂r. It is then straightforward to verify from Eq. (177) that

a(r) =
f(r)∂r(2ω

2 − Vrw − Vzm)

2(Vrw − Vzm)
=

λ(λ+ 1)

3M
+

3Mf(r)

r(λr + 3M)
. (181)

The second constraint, Eq. (178), implies that the RW and Zerilli potentials are related by

Vzm = Vrw + 2a′, (182)

which is readily verified by inserting expressions (98) and (139) for the potentials. A proof that this
DT agrees with Chandrasekhar’s transformation is given in [23].
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2.9.2 Isospectrality of the Darboux transformation

In this section we will show that the existence of a DT between the potentials of the RW and Zerilli
equations implies that their QNM frequencies are isospectral. We make use of the fact that DTs in
general have the inherent property of preserving the transmission and reflection amplitudes of the
potentials they relate.

Transmission amplitudes describe how an incoming plane wave propagates through the potential,
while reflection amplitudes determine how the wave is scattered back. Together, these quantities fully
characterize the asymptotic properties of the wave. QNMs are defined precisely by this asymptotic
behaviour15; they correspond to the values of ω for which the wave is purely outgoing at r∗ = +∞
and purely ingoing at r∗ = −∞. If the transmission and reflection coefficients of two potentials are
equal, their QNM spectra must be identical, which means that they are isospectral. We will therefore
explicitly demonstrate the isospectrality of Darboux-related potentials by proving the equality of their
transmission and reflection coefficients.

Figure 2: A plane wave impinging on the RW or Zerilli potential is partially reflected and partially
transmitted. Adapted from: [44].

Characteristics that are key to the argument are non-singular, barrier-like and short-ranged16 nature
of the RW and Zerilli potentials. The latter implies that the asymptotic behaviour of the solutions
ΨRW and ΨZM is in the form of plane waves,

Ψ ∼ e±iωr∗ (r∗ → ±∞), (183)

which follows from Eq. (97) and Eq. (136) when their respective potentials vanish. Let ΨRW describe
a wave coming from r∗ = +∞ and hitting the potential Vrw(r

∗). The wave will be partially reflected
and partially transmitted, which is described by the solution

ΨRW(+∞) =Ain(ω)e
−iωr∗ +Aout(ω)e

iωr∗ ,

ΨRW(−∞) =Bin(ω)e
−iωr∗ .

(184)

The accompanying reflection and transmission coefficients are given by

Iref =
|Aout|2

|Ain|2
, Itrans =

|Bin|2

|Ain|2
. (185)

15At this point it is particularly convenient to work with the tortoise coordinate, as r∗ → r for r → +∞ and r∗ → −∞
for r → 2M , the latter corresponding to the event horizon of the black hole. Hence, in terms of the tortoise coordinate,
there is no coordinate singularity at the event horizon [44].

16With short-ranged, we mean they must decay faster than (r∗)−1 as r∗ → ±∞.
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Since the QNM frequencies are the values of ω for which the wave is purely outgoing at r∗ = +∞ and
purely ingoing at r∗ = −∞, we must have

Ain(ω)
!
= 0, (186)

which means that I−1
ref = I−1

trans = 0 for QNMs.

Inserting Eqs. (184) into the linear Darboux relation (173) provides the form of ΨZM(±∞):

ΨZM(+∞) =∂r∗ΨRW(+∞) + a(+∞)ΨRW(+∞)

=[−iω + a(+∞)]Ain(ω)e
−iωr∗ + [iω + a(+∞)]Aout(ω)e

iωr∗

:=Aine
−iωr∗ +Aoute

iωr∗ ,

ΨZM(−∞) =∂r∗ΨRW(−∞) + a(−∞)ΨRW(−∞)

=[−iω + a(−∞)]Bin(ω)e
−iωr∗

:=Bin(ω)e
−iωr∗ .

(187)

A Taylor expansion of (181) around r∗ → ±∞ gives

a(±∞) = a0 +O
(

1

r∗

)
, a0 =

λ(λ+ 1)

3M
, (188)

such that the reflection and transmission coefficients are

Iref =
|Aout|2

|Ain|2
= Iref

|iω + a0|2

|iω − a0|2
= Iref,

Itrans =
|Bin|2

|Ain|2
= Itrans

|iω − a0|2

|iω − a0|2
= Itrans.

(189)

The even QNMs satisfy the similar condition

Ain(ω)
!
= 0 −→ I−1

ref = I−1
trans = 0. (190)

The fact that Itrans = Itrans and Iref = Iref for the Darboux-related potentials Vzm and Vrw, and
the fact that they satisfy the same QNM condition proves that the QNM spectra of both potentials
coincide. This proves that the RW and Zerilli equations are isospectral.
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3 Metric Perturbations of the Black String Spacetime

In Section 2, we covered the formalism of metric perturbations for the Schwarzschild black hole,
and established the isospectrality of its QNM frequencies. We now apply this approach to the five-
dimensional spacetime of a black string, aiming to investigate whether a similar isospectral relationship
holds in this higher-dimensional setting.

When considering black holes in five dimensions, a natural starting point is the Schwarzschild space-
time, which can be extended by an additional dimension in (at least) two distinct ways. The first
option is to introduce an extra angular dimension, resulting in a hyper-spherically symmetric black
hole. Alternatively, we can extend the spacetime uniformly along a fourth spatial dimension, forming
a black string [45]. If we would extend our spacetime even further in this manner, black strings can be
viewed as lower-dimensional cases of the more general black p-brane, a class of black objects predicted
by ST. A p-brane is effectively the p-dimensional counterpart of a black hole. [46]. A black string
therefore represents a p = 5 -dimensional generalization of a black hole.

The structure of this section is as follows. First, we briefly examine a key property of the black string,
namely its instability. In Section 3.2, we discuss the form of the metric describing a black string.
Following this, we apply the perturbation formalism to the black string spacetime, aiming to derive
the five-dimensional Regge-Wheeler and Zerilli equations in Sections 3.3 - 3.8. Section 3.9 covers a
short discussion on the number of variables in our results.

3.1 Instability

Schwarzschild black holes have been demonstrated to be stable under linear metric perturbations by
Regge and Wheeler [16]. In a study of higher-dimensional black holes, Gregory and Laflamme [47]
established that black strings and p-branes are in fact unstable when subjected to such perturbations,
an effect now referred to as the Gregory-Laflamme instability. This instability is physical, which
suggests that the event horizon may undergo fragmentation into several higher-dimensional analogues
of spherical black holes.

Since linear perturbation theory cannot predict the final state of black strings, more recent studies
have sought to determine it numerically using nonlinear methods (see Ref. [48–50]). These studies
have revealed that sufficiently thin black strings, when perturbed, evolve into a sequence of three-
dimensional spherical black holes of varying sizes, connected by black string segments (of comparable
radius). Each of these local string segments is itself unstable, driving a self-similar cascade down to
arbitrarily small scales17. However, a definitive consensus on whether this constitutes the true final
state of the black string has yet to be reached.

The Gregory-Laflamme instability is relevant for our discussion of perturbations of a black string
because it imposes a limiting condition on its length. In the next section, we will discuss the concrete
implications of this limitation.

3.2 Metric

The metric of a black string is obtained by introducing an additional uniform spatial dimension to the
Schwarzschild metric, resulting in a spacetime with cylindrical symmetry. The uniformity of this extra
dimension implies that it is independent of any of the coordinates. Consequently, the line element for
this spacetime is given by

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2dΩ2

2 + dz2. (191)

17Notably, this bifurcation could lead to the formation of a naked singularity, potentially violating the cosmic censorship
hypothesis. For a discussion, see Ref. [49, 51, 52].
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A visualization of the event horizon of this spacetime is given in Figure 3. This metric evidently
exhibits translational symmetry along the z-direction, suggesting that the black string can, in principle,
extend indefinitely. There are two simple heuristic arguments why this is physically impossible. First,
an infinitely long string would possess an infinite total mass, which is clearly unphysical. Second,
the string’s length is fundamentally limited by the Gregory-Laflamme instability. As discussed in
Section 3.1, this instability causes the string to fragment when its length exceeds a critical value (Lc).
Fragmentation results from the growing modes of the instability if this threshold is exceeded [48].
To circumvent these issues, we assume the black string is compact, meaning it has a finite length L,
satisfying Lc ≫ L ≫ Rs, where Rs is string’s radius. This assumption not only ensures a finite total
mass but also aligns the black string with the string-theoretical (Kaluza-Klein) framework.

Figure 3: A visualization of the event horizon of a black string (left), with the effect of the instability
caused by a perturbation (right). Adapted from [1].

3.3 Perturbing the black string

We will now perturb the metric of the black string, similarly to how we perturbed the Schwarzschild
metric in Section 3. As before, we separate the full manifold into two submanifolds. We naturally
choose18 to incorporate the z-dimension into M3. The line element then takes the form

ds2 = −f(r)dt2 +
1

f(r)
dr2 + dz2 + r2(dθ2 + sin2 θdϕ2) := gabdx

adxb + r2ΩABdx
AdxB . (192)

with the lowercase Latin indices indicating

xa = (t, r, z), a = 0, 1, 2, (193)

while the capital Latin indices still take on either θ or ϕ:

xA = (θ, ϕ), A = 3, 4. (194)

18In principle we could integrate the extra dimension into S3, but this would introduce unnecessary complexity. We
prefer to maintain the advantage that the angular part of the perturbations naturally separates, something we used
to our advantage in the four-dimensional case. It is important to note that absorbing the uniform z-dimension into
the angular coordinates differs from introducing a new angular dimension, as the latter would lead to hyperspherical
symmetry rather than cylindrical symmetry.
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Curvature quantities will inevitably change upon adding the extra dimension. We expect however
that adding a uniform dimension does not alter the constant-curvature nature of the submanifold19,
allowing us to use Eq. (18) for d = 3,

Rabcd =
2M

3r3
(gacgbd − gadgbc), (195)

where we used the fact that the Ricci scalar of M3 is equal to that of M2. It is not surprising that the
Riemann tensor differs from its two-dimensional counterpart, as different spacetimes inherently come
with distinct background curvatures.

Since the extra dimension does not depend on any of the coordinates, derivatives of the metric remain
unchanged, and the Christoffel symbols are identical to those in the four-dimensional case (after all,
Christoffel symbols with one or more z-indices simply vanish). Consequently, the linearized connection
(Eq. (37)), along with the Ricci tensor (Eq. (49)) and Einstein tensor (Eq. (51)) , are also unaffected.
We verify this by evaluating them in five dimensions using the script 5d pert coordinates.nb. In
the next section, we will observe that differences with perturbations of the Schwarzschild spacetime
emerge when we apply the spherical harmonics decomposition.

3.4 Decomposition into spherical harmonics

The perturbed metric components are again decomposed in scalar, vector and tensor harmonics of
even and odd parity as

γab =
∑
l,m

f ℓm
ab (t, r, z)Y ℓm,

γaA =
∑
l,m

{
jℓma (t, r, z)Y ℓm

A + hℓm
a (t, r, z)Xℓm

A

}
,

γAB =
∑
l,m

{
r2Kℓm(t, r, z)ΩABY

ℓm + r2Gℓm(t, r, z)Y ℓm
AB + hℓm

3 (t, r, z)Xℓm
AB

}
.

(196)

The addition of an extra coordinate implies that the mode functions take the form

f ℓm
ab =

f(r)Hℓm
0 (t, r, z) Hℓm

1 (t, r, z) Hℓm
3 (t, r, z)

Hℓm
1 (t, r, z) 1

f(r)H
ℓm
2 (t, r, z) Hℓm

4 (t, r, z)

Hℓm
3 (t, r, z) Hℓm

4 (t, r, z) Hℓm
5 (t, r, z)

 , (197)

jℓma =

jℓm0 (t, r, z)
jℓm1 (t, r, z)
jℓm2 (t, r, z)

 , (198)

hℓm
a =

hℓm
0 (t, r, z)

hℓm
1 (t, r, z)

hℓm
2 (t, r, z)

 . (199)

Note that the mode hℓm
2 is now part of hℓm

a , while hℓm
3 is the new name for the odd-parity mode

belonging to the tensor harmonic Xℓm
AB . It is evident that there are 11 even-parity modes (Hℓm

0 , Hℓm
1 ,

Hℓm
2 , Hℓm

3 , Hℓm
4 , Hℓm

5 jℓm0 , jℓm1 , jℓm2 , Kℓm and Gℓm) and four odd-parity modes (hℓm
0 , hℓm

1 , hℓm
2 and

hℓm
3 ).

19The assumption that M3 has constant curvature turns out to be incorrect. See the addendum at the end of this
thesis
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3.5 Gauge transformations

In total there are 15 variables (Hℓm
0 , Hℓm

1 , Hℓm
2 , Hℓm

3 , Hℓm
4 , Hℓm

5 jℓm0 , jℓm1 , jℓm2 , Kℓm, Gℓm, hℓm
0 , hℓm

1 ,
hℓm
2 and hℓm

3 ) in the 11 even-parity and four odd-parity vacuum Einstein equations. We can again
eliminate some of them by applying appropriate gauge transformations. Dividing the gauge vector
Ξµ = (Ξa,ΞA) into vectors with even and odd parity,

Ξa =
∑
ℓm

ξℓma Y ℓm,

ΞA =
∑
ℓm

{
ξℓm3 Y ℓm

A + ξℓm4 Xℓm
A

}
,

(200)

shows that there are four even-parity functions, ξℓm0 , ξℓm1 , ξℓm2 and ξℓm3 , and one odd-parity function,
ξℓm4 . By exploiting the gauge freedom, we can therefore eliminate four20 even-parity mode components
(as opposed to three in the Schwarschild case) and one odd-parity mode component of the metric
perturbations.

3.5.1 Odd-parity gauge transformations

The odd-parity gauge transformations are generated by Ξ
(odd)
µ = (0,Ξ

(odd)
A ). Analogously to the four-

dimensional case, we find that the mode functions transform as

hℓm
a −→ h′ℓm

a = hℓm
a − Daξ

ℓm
4 +

2

r
raξ

ℓm
4 , (201)

hℓm
3 −→ h′ℓm

3 = hℓm
3 − 2ξℓm4 . (202)

We now find three gauge-invariant quantities:

h̃ℓm
a = hℓm

a − 1

2
∂ah

ℓm
3 +

1

r
rah

ℓm
3 . (203)

Eq. (202) shows that we can set hℓm
3 = 0 by imposing that ξℓm4 = 1

2h
ℓm
3 . This is the five-dimensional

analogue of the RW gauge. Imposing hℓm
3 = 0 implies

h̃ℓm
0 = hℓm

0 , (204)

h̃ℓm
1 = hℓm

1 , (205)

h̃ℓm
2 = hℓm

2 . (206)

3.5.2 Even-parity gauge transformations

The even-parity gauge transformations are generated by Ξ
(even)
µ = (Ξ

(even)
a ,Ξ

(even)
A ), such that the

mode functions transform as

f ℓm
ab −→ f ′ℓm

ab = f ℓm
ab − 2D(aξ

ℓm
b) , (207)

jℓma −→ j′ℓma = jℓma − ξℓma − Daξ
ℓm
3 +

2

r
raξ

ℓm
3 , (208)

Kℓm −→ K ′ℓm = Kℓm +
ℓ(ℓ+ 1)

r2
ξℓm3 − 2

r
raξℓma , (209)

Gℓm −→ G′ℓm = Gℓm − 2

r2
ξℓm3 . (210)

20The fact that we can fix an extra even-parity quantity compared to four dimensions is simply due to the fact that
jℓma is extended with one variable, jℓm2 .
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The gauge-invariant quantities are

f̃ ℓm
ab = f ℓm

ab − D(a

(
jℓmb) − r2

2
Db)G

ℓm

)
, (211)

K̃ℓm = Kℓm +
ℓ(ℓ+ 1)

2
Gℓm − 2

r
ra
(
jℓma − r2

2
DaG

ℓm

)
. (212)

We can set jℓma = 0 and Gℓm = 0 by choosing ξℓm3 = r2

2 G
ℓm and ξℓma = jℓma − r2

2 DaG
ℓm in the RW

gauge. Imposing jℓma = 0 and Gℓm = 0 implies that

f̃ ℓm
ab = f ℓm

ab , (213)

K̃ℓm = Kℓm. (214)

This means that also in five dimensions, the perturbed quantities in the RW gauge are equal to their
gauge-invariant counterparts. From now one we will pick up the practice of dropping the summation
over ℓ and m.

3.6 Tools for checking calculations

The introduction of the extra dimension adds several variables and equations, making it considerably
more difficult to decouple the perturbation equations. As a result, the calculations in the rest of this
thesis will be lengthy and tedious. It is crucial to carefully track the information contained within the
system of perturbation equations. We have three “tools” that aid us in assessing the correctness of
our calculations:

• Schwarzschild limit: By setting all quantities related to the fifth dimension to zero (i.e. the
new variables and z-derivatives), we can verify that we recover the four-dimensional results. To
facilitate a clear comparison, it is helpful to work in terms of the dimension d = 2, 3, where the
Schwarschild limit corresponds to d = 2, and the black string case corresponds to d = 3.

• Counting variables and equations: After manipulating the equations, we can count the total
number of variables and the corresponding equations needed to describe them. This allows us to
track the information in the system, ensuring it is not underdetermined.

• Dimensional analysis: It is always possible to check whether the terms in our calculations
have the correct dimensions. For instance, the (linearized) Ricci tensor has dimensions [δRµν ] =
[Rµν ] = m−2, since it contains second derivatives of the metric tensor. Note that throughout
this thesis, we use natural units. To restore units, we must replace M → GNM/c2 and t → ct,
with GN Newton’s constant and c the speed of light.

While none of these tools do not provide proof that we have obtained the correct results, they do
minimize the risk of structural errors.
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3.7 Regge-Wheeler equation

In this section, we aim to derive the RW equation in five dimensions. We start from the odd parity
perturbation equations21 in Appendix D for d = 3. We must be careful that this time,

−1

r
hbDaD

br = −1

r

M

r2

h0

h1

0

 ̸= −M

r3
ha = −1

r

M

r2

h0

h1

h2

 , (216)

impeding us from using the same simplification for δR
(odd)
aB as in four dimensions. We obtain the

following vacuum Einstein equations:

δR
(odd)
ab = 0,

δR
(odd)
aB = 0 =

[
− □̂ha + DaD

bhb +
4M

3r3
ha −

2

r
raD

bhb +
2

r
rbDahb −

2

r2
rar

bhb

− 2

r
hbDaD

br +
ℓ(ℓ+ 1)

r2
ha

]
XB ,

δR
(odd)
AB = 0 = [Daha]XAB .

(217)

3.7.1 Decoupling in coordinates

Eqs. (217) are evaluated in coordinates using the script 5d pert coordinates.nb in terms of the
dimension d. The results are

δR
(odd)
tA = 0 =

1

2

[
f(r)

(
−∂2

rh0 +

(
∂r +

2

r

)
∂th1

)
+

(
ℓ(ℓ+ 1)

r2
+

2M

r3

(
2

d
− 3

))
h0

+ ∂t∂zh2 − ∂2
zh0

]
XA,

δR
(odd)
rA = 0 =

1

2

[
− 1

f(r)

(
∂r −

2

r

)
∂th0 +

(
(ℓ− 1)(ℓ+ 2)

r2
+

2M

r3

(
2

d
− 1

))
h1

+
1

f(r)
∂2
t h1 +

(
∂r −

2

r

)
∂zh2 − ∂2

zh1

]
XA,

δR
(odd)
zA = 0 =

1

2

[
− 1

f(r)
∂t∂zh0 +

(
f(r)∂r +

2

r

(
1− M

r

))
∂zh1

+

(
1

f(r)
∂2
t − 2M

r2
∂r − f(r)∂2

r

)
h2 +

(
ℓ(ℓ+ 1)

r2
+

4M

dr3

)
h2

]
XA,

δR
(odd)
AB = 0 =

[
− 1

f(r)
∂th0 + ∂r (f(r)h1) + ∂zh2

]
XAB .

(218)

21The odd-parity perturbations constitute the following symmetric matrix:

γµν =

[
0 haXB

hbXA 0

]
=


0 0 0 γtθ γtϕ

0 0 γrθ γrϕ
0 γzθ γzϕ

sym. 0 0
0

 . (215)

It is evident that we cannot simplify our analysis by treating perturbations that are independent of θ and ϕ, a tactic
employed by Gregory [45]; there simply wouldn’t be any odd-parity perturbations left, making it rather difficult to prove
or disprove isospectrality.
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The correct Schwarzschild limit is obtained when we set d = 2 and h2 and z-derivatives to zero. For
d = 3, we have

0 = f(r)

(
−∂2

rh0 +

(
∂r +

2

r

)
∂th1

)
+

(
ℓ(ℓ+ 1)

r2
+

2M

r3

(
2

d
− 3

))
h0 + ∂t∂zh2 − ∂2

zh0,

0 = − 1

f(r)

(
∂r −

2

r

)
∂th0 +

(
(ℓ− 1)(ℓ+ 2)

r2
+

2M

r3

(
2

d
− 1

))
h1 +

1

f(r)
∂2
t h1

+

(
∂r −

2

r

)
∂zh2 − ∂2

zh1,

0 = − 1

f(r)
∂t∂zh0 +

(
f(r)∂r +

2

r

(
1− M

r

))
∂zh1 +

(
1

f(r)
∂2
t − 2M

r2
∂r − f(r)∂2

r

)
h2

+

(
ℓ(ℓ+ 1)

r2
+

4M

dr3

)
h2,

0 = − 1

f(r)
∂th0 + ∂r (f(r)h1) + ∂zh2.

(219)

One can check that only the second, third and fourth equations are independent. To decouple Eqs.(219),
we first rewrite the last equation as

∂th0 = f(r)∂r (f(r)h1) + f(r)∂zh2 (220)

and substitute it into the second and third equations to eliminate any dependence on h0:

0 =
1

f(r)
∂2
t h1 − f(r)∂2

rh1 +
2(r − 5M)

r2
∂rh1 − ∂2

zh1

+

(
(ℓ− 1)(ℓ+ 2)

r2
− 56M2 − 22Mr

3r4f(r)

)
h1 −

2M

r2f(r)
∂zh2,

0 = −2

r
f(r)∂zh1 −

[
− 1

f(r)
∂2
t + f(r)∂2

r +
2M

r2
∂r + ∂2

z

]
h2 +

(
ℓ(ℓ+ 1)

r2
+

4M

3r3

)
h2.

(221)

We now introduce the RW function, given by Eq. (90) (it is readily verified from its covariant definition,
Eq. (99), that the RW function is identical in four and five dimensions). Moreover, we use that the
d’Alembertian operator of M3 is given by

□̂ΨRW :=
1√
−g

∂a
(√

−g gab∂bΨRW

)
=

(
− 1

f(r)
∂2
t + f(r)∂2

r +
2M

r2
∂r + ∂2

z

)
ΨRW

=
(
□+ ∂2

z

)
ΨRW. (222)

We can then write (221) as two coupled equations in terms of ΨRW and h2:

□̂ΨRW +
2M

r3
∂zh2 −

(
ℓ(ℓ+ 1)

r2
− 20M

3r3

)
ΨRW = 0, (223)

□̂h2 − 2∂zΨRW −
(
ℓ(ℓ+ 1)

r2
+

4M

3r3

)
h2 = 0. (224)

Defining the new potentials VΨ and V2, we can write this more compactly as(
□̂− VΨ

)
ΨRW +

2M

r3
∂zh2 = 0, (225)(

□̂− V2

)
h2 − 2∂zΨRW = 0, (226)

41



3 METRIC PERTURBATIONS OF THE BLACK STRING SPACETIME

where

VΨ :=
ℓ(ℓ+ 1)

r2
− 20M

3r3
, (227)

V2 :=
ℓ(ℓ+ 1)

r2
+

4M

3r3
. (228)

Interestingly, by applying the same approach as in four-dimensions, we end up with two coupled
equations instead of one. In Section 3.7.3, we investigate whether these equations can also be decoupled.
First however, we will briefly show that the same results are obtained using a covariant approach.

3.7.2 Decoupling covariantly

We start the covariant approach from the d-dimensional analogue of Eq. (100), i.e.

0 =
1

r
ra
(
−□ha +

2

r
rbDahb

)
− 2

r2
ra(DaD

br)hb −
1

r3

[
2− 4M

r

(
1 +

1

d

)
− ℓ(ℓ+ 1)

]
raha. (229)

The individual terms in this expression can be rewritten using the covariant form of the RW function,
Eq. (99). We first term becomes

1

r
ra□ha = □

(
1

r
raha

)
− 2

r
(Dbra)Dbha −

1

r3
rarbrbha +

1

r2
rb(D

bra)ha

+
1

r2
ra(□r)ha −

1

r
(□ra)ha +

2

r
rbDb

(
1

r
raha

)
= □ΨRW +

2

r
rbDbΨRW +

2M

r3
∂zh2 +

4M

r3
ΨRW. (230)

The difference compared to the four-dimensional case arises from the fact that this time,

−2

r
(Dbra)Dbha = −2M

r3
Daha︸ ︷︷ ︸
=0

+
2M

r3
∂zh2 =

2M

r3
∂zh2. (231)

Substituting Eqs. (230) for the first term in Eq. (229) and Eq. (104) for the second term gives

□̂ΨRW +
2M

r3
∂zh2 −

[
ℓ(ℓ+ 1)

r2
− 4M

r3

(
2− 1

d

)]
ΨRW = 0, (232)

which in the Schwarzschild limit indeed reduces to Eq. (91). For d = 3 it reduces to Eq. (223). As in

the four-dimensional case, we have now combined three of the vacuum Einstein equations: δR
(odd)
tA = 0,

δR
(odd)
rA = 0 and δR

(odd)
AB = 0. A short calculation shows that δR

(odd)
zA = 0 indeed gives the additional

equation in (224).

3.7.3 Decoupling even further

By explicitly rewriting the system as a set of coupled PDEs, we have shown that it can be reduced to
two coupled equations for ΨRW and h2, a result we confirmed with a brief covariant calculation. The
question remains whether it is possible to decouple them into two independent wave equations.

To this end, we recast Eqs. (223) and (224) into the form

□̂v⃗ −
(
VΨ − 2M

r3 ∂z
2∂z V2

)
v⃗ = 0, (233)

where we defined the vector

v⃗ :=

(
ΨRW

h2

)
. (234)

42



3 METRIC PERTURBATIONS OF THE BLACK STRING SPACETIME

In principle we could try to diagonalize the matrix(
VΨ − 2M

r3 ∂z
2∂z V2

)
(235)

by solving an eigenvalue equation. This would lead to a differential equation that requires the deter-
mination of boundary conditions in order to find its solution. To avoid this, we decide to adopt a
z-dependence of the form eikz for ΨRW (or equivalently h1) and h2, which is a periodic function in the
z-direction with wavenumber22 k:

h1(t, r, z) = eikzh1(t, r), (236)

h2(t, r, z) = eikzh2(t, r). (237)

Such z-dependence is justified by translational symmetry in the z-direction, and is therefore only valid
under the assumption that the string has a finite length much shorter than the critical length (see
Section 3.2). With this assumption, the system can be written as

□v⃗ −Av⃗ = 0, (238)

with

A :=

(
k2 + VΨ − 2ikM

r3

2ik k2 + V2

)
. (239)

Note the change of the dimensionality of the d’Alembertian operator! We can diagonalize the matrix
A by decomposing it as

A = P−1DP, (240)

where the matrix D is diagonal and has the eigenvalues of A as its diagonal elements, and the columns
of P consist of the eigenvectors of A. In the script 5d pert coordinates.nb, we calculate the
eigenvalues and eigenvectors of A, resulting in

D =

(
λ1(r) 0
0 λ2(r)

)
, (241)

P =

(
i(2M+

√
M(4M−k2r3)

kr3
i(2M−

√
M(4M−k2r3)

kr3

1 1

)
, (242)

with eigenvalues

λ1,2(r) =
1

2
(VΨ + V2) + k2 ± 1

2

√
16k2M

r3
+ (V 2

Ψ − V 2
2 )

2

=
ℓ(ℓ+ 1)

r2
− 8M

3r3
+ k2 ± 2

r3

√
M(4M + k2r3). (243)

λ1(r) is attributed to the − sign and λ2(r) to the + sign. Having diagonalized A, we insert Eq. (240)
into Eq. (238) and rewrite the result as (

□− P−1DP
)
v⃗ = 0

(P□−DP ) v⃗ = 0

(P□− PD) v⃗ = 0

(□−D) v⃗ = 0. (244)

22We are allowed to use the same wavenumber k in both h1 and h2 because we are working with linear perturbation
theory, where there is no interaction between the modes.
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In the first step, we multiplied from the left with P . Then, we commuted the matrices D and P .
The latter is allowed because their commutator is, fortunately, zero by direct computation (a highly
non-trivial result!). Eq. (244) implies that we can write the system as two independent wave equations,

[□− λ1(r)]ΨRW(t, r) = 0, (245)

[□− λ2(r)]h2(t, r) = 0, (246)

with the functions λ1(r) and λ2(r) as potentials.

The fact that we end up with two independent wave equations in the variables ΨRW(t, r) and h2(t, r)
can be attributed to the presence of both radial perturbations and perturbations along the length of
the string, with the odd-parity sector of the latter being described by h2. We will argue in Section 3.9
that the decoupling into two equations in this manner is indeed a plausible result.

3.8 Zerilli equation

In this section, we attempt to find the Zerilli equation in five dimensions. We start from the even-parity
vacuum Einstein equations given in Appendix D. For d = 3, these are

δR
(even)
ab = 0 =

1

2

[
DbDmfm

a +
4M

r3

(
fba −

1

3
gbaf

m
m

)
+ DaDmfm

b − □̂fab

+
2

r
rm (Dbf

m
a + Daf

m
b − Dmfab)− DaDbf

m
m +

ℓ(ℓ+ 1)

r2
fab

− 2

r
(rbDaK − raDbK)− 2DaDbK

]
Y,

δR
(even)
aB = 0 =

1

2

[
Dmfm

a − Daf
m
m +

1

r
raf

m
m − DaK

]
YB ,

δR
(even)
AB = 0 =

[
rraDbf

ab − 1

2
rrbDbf

m
m + rarbf

ab + rDarbf
ab − 1

2
□̂(r2K)

+
1

2
ℓ(ℓ+ 1)K +

1

4
ℓ(ℓ+ 1)fa

a

]
ΩABY − 1

2
fa
aYAB .

(247)

3.8.1 Decoupling in coordinates

Eqs. (247) are evaluated using the script 5d pert coordinates.nb in the dimension d. This yields
a system of ten coupled PDEs with the correct Schwarzschild limit. The equations in terms of d are
not particularly illuminating to present. We show the result for d = 3:
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δR
(even)
tt = 0 = − 1

f(r)
∂2
tK +

M

r2
∂rK − 1

2f(r)
∂2
tH0 −

f(r)

2
∂2
rH0 −

1

2
∂2
zH0 −

r −M

r2
∂rH0 +

ℓ(ℓ+ 1)

2r2
H0

+
2r − 3M

r2f(r)
∂tH1 + ∂t∂rH1 −

M

r2
∂rH2 −

2M

r3
H2 +

1

f(r)
∂t∂zH3 −

M

r2
∂zH4,

δR
(even)
tr = 0 = −r − 3M

r2f(r)
∂tK − ∂t∂rK − 1

2
∂t∂rH0 +

M

2r2f(r)
∂tH0 −

1

2
∂2
zH1 +

(
ℓ(ℓ+ 1)

2r2
− 2M

r3

)
H1

+
1

2
∂t∂rH2 +

2r − 5M

2r2f(r)
∂tH2 +

1

2
∂r∂zH3 −

M

r2f(r)
∂zH3 +

1

2
∂t∂zH4,

δR
(even)
tz = 0 = −∂t∂zK − 1

2
∂t∂zH0 +

f(r)

2
∂r∂zH1 +

f(r)

r
∂zH1 −

f(r)

2
∂2
rH3 −

f(r)

r
∂rH3

+

(
ℓ(ℓ+ 1)

2r2
+

M

r3

)
H3 +

f(r)

r
∂tH4 +

f(r)

2
∂t∂rH4 +

1

2
∂t∂zH5,

δR(even)
rr = 0 = −f(r)∂2

rK − M

r2
∂rK − M

r2f(r)
∂tH0 +

M

r2
∂rH0 −

2M

r3
H0 − ∂t∂rH1 +

1

2f(r)
∂2
tH2

+
f(r)

2
∂2
rH2 +

r −M

r2
∂rH2 −

1

2
∂2
zH2 +

ℓ(ℓ+ 1)

2r2
H2 + f(r)∂r∂zH4 +

M

r2
∂zH4,

δR(even)
rz = 0 = −∂r∂zK +

1

r
∂zK +

M

2r2f(r)
∂zH0 −

1

2f(r)
∂t∂zH1 +

1

2
∂r∂zH2 +

2r − 3M

2r2f(r)
∂zH2

− 1

2f(r)
∂t∂rH3 +

1

2r2f(r)
∂2
tH4 +

(
ℓ(ℓ+ 1)

2r2
+

M

r3

)
H4 +

1

2
∂r∂zH5,

δR(even)
zz = 0 = ∂2

zK +
1

f(r)
∂t∂zH3 − f(r)∂r∂zH4 −

2(r −M)

r2
∂zH4 −

1

2f(r)
∂2
tH5 +

f(r)

2
∂2
rH5

+
r −M

r2
∂rH5 −

1

2
∂2
zH5 −

(
ℓ(ℓ+ 1)

2r2
+

2M

r3

)
H5,

δR
(even)
tA = 0 = ∂tK + ∂tH0 − f(r)∂rH1 −

2M

r2
H1 − ∂zH3,

δR
(even)
rA = 0 = ∂rK − M

r2f(r)
H0 +

1

f(r)
∂tH1 − ∂rH2 −

M

r2f(r)
H2 − ∂zH4,

δR
(even)
zA = 0 = ∂zK +

1

f(r)
∂tH3 − f(r)∂rH4 −

2M

r2
H4 − ∂zH5. (248)

δR
(even)
AB = 0 yields two conditions, namely

0 =
1

f(r)
∂2
tK − f(r)∂2

rK − ∂2
zK +

(6M − 4r)

r2
∂rK +

(ℓ+ 2)(ℓ− 1)

r2
K

− 2

r
∂tH1 +

2

r
f(r)∂rH2 +

2

r2
H2 +

2

r
f(r)∂zH4 (249)

and the trace condition

fa
a = −H0 +H2 +H5 = 0 −→ H5 = H0 −H2. (250)

With this trace condition we can eliminate H5 from the resulting system.

We observe that the system consists of three first-order equations and seven second-order equations. In
principle, we should be able to derive an algebraic relation from the second-order equations following
the method from Section 2.8. However, this turns out to be practically unfeasible. Eliminating the
various (mixed) derivatives with the z-coordinate is extremely difficult and boils down to brute-force
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trial and error23.

A possible method to simplify the problem is to assume an exponential dependence for the modes, for
example, in the variables t and z, effectively disposing of the corresponding partial derivatives. While
this simplifies the problem to some degree, it remains insufficient to obtain a single algebraic identity.
Even if such an identity were found in this case, this is just the starting point of the decoupling
process in coordinates! Clearly, a more systematic approach is required to decouple the even-parity
perturbation equations.

3.8.2 Decoupling covariantly

A more systematic approach to the decoupling problem is provided by Martel [9], which uses covariant
calculations. While this approach is more organized in principle, it does come with its own set of
challenges. As we will see, the method is highly detailed and specifically designed to work in four
dimensions. We must be very careful in identifying the additional terms that will appear in our five-
dimensional calculations. Furthermore, although the ZM function in (142) was successful in decoupling
the four-dimensional system, there is no guarantee that the same function will work in five dimensions.

As in Section 3.8.2, we make use of the Einstein tensors in the linearized vacuum Einstein equations.
They are given in terms of even-parity spherical harmonics in Appendix D, Eqs. (317)-(319). A minor
difference with the four-dimensional case is that we cannot make use of Eq. (30) to simplify Qab. The
five-dimensional analogue of Eqs. (151)-(153) is therefore

0 = Qab = DcD(bf
c
a) −

1

2
gabDcDdf

cd − 1

2
□̂fab +

2

r
rc
(
D(bfa)c − gabDdf

d
c

)
− rc

r
Dcfab

+
λ+ 1

r2
fab −

1

r2
gabr

crdfcd −
1

r
gab(Dcrd)f

cd − DaDbK + gab□̂K

− 2

r
r(aDb)K +

3

r
gabr

cDcK − λ

r2
gabK, (251)

0 = Qa = Dbf
b
a − DaK, (252)

0 = Q
Z
= −DaDbf

ab − 2

r
raDbf

ab +□K +
2

r
raDaK. (253)

From this point onward, we follow the steps outlined in Section 2.8.2, with the necessary adaptation to
Qab. The first objective is again to rewrite Eqs. (252)-(253) into three differential equations in terms
of only K and v and to decouple them using the ZM function. We keep the calculations in terms of
the dimension d and only insert d = 3 at the end.

The first equation in the new system is obtained by taking the trace of Qab, and is the analogue of Eq.
(154). Making use of the trace condition, this yields

0 = Qa
a = □̂K +

2

r
raDaK − 2λ

r2
K − 2

r2
rarbfab −

2

r
(Dcrd)f

cd

= □̂K − 2λ

r2
K − 2

r2
v +

2M

r3
f(r)H5. (254)

The second and third equations in our system are constructed by taking combinations of Qab. Un-
fortunately, at this point we cannot make use of relation (157) due to the fact that Eq. (156) cannot
simply be extended from two to three dimensions. Due to the additional degrees of freedom in the
Riemann tensor, the three-dimensional analogue of Eq. (157) must include extra terms, though their
exact form remains unclear24. This presents an inconvenience for which we currently have no solution.

23In the script 5d pert coordinates.nb we developed a method to manipulate the equations, allowing the brave
reader to give it a try.
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Continuing without this simplification, the first combination is expressed as

0 = f(r)Qa
a − rarbQab = −rarb

r
(rcDcfab − rDaDbK)−

[
λ+ 1

r2
+

f(r)

r2

]
rarbfab

+
f(r)

r
raDaK − λ

r2
f(r)K − f(r)

r
(Dcrd)f

cd − rarbDcDaf
c
b

+
f(r)

2
DcDdf

cd +
1

2
rarb□̂fab +

2

r
f(r)rcDcDdf

cd. (255)

We make use of the equivalent of Eq. (164), i.e.

rarb□̂fab = □̂v +
4M

r3
v + r□̂(raDaK) + 2rarbDaDbK

+
4M

r2
raDaK +

4M

r2
f(r)∂zH4 +

2M2

r4
H5, (256)

and rewrite Eq. (255) in the same manner as in Section 2.8.2:

0 = −1

r
raDav −

1

r2

[
λ+ 2 +

2M

dr
(d− 4)

]
v − 1

r

(
λ+

7M

r
− 8M

dr

)
raDaK

− λ

r2
f(r)K +

f(r)

2
□̂K +

1

2
□̂v +

1

2
□̂(raDaK) +

2M

r2
f(r)∂zH4 +

M

r3

(
1− M

r

)
H5. (257)

This is the second equation of our new system.

We finally make the following combination:

0 =
2

r
rarbQab + rbDbQ

a
a = −1

r
rarb□̂fab −

2

r
rc(DcDarb)f

ab − 2

r
rc(Darb)Dcf

ab

+

(
2(λ+ 2)

r3
− 8M(d− 2)

dr4

)
rarbfab +

f(r)

r
□̂K + raDa

(
□̂K

)
+

2

r2

(
5M

r
− 2− λ

)
raDaK +

2

r
rarbDaDbK +

2λ

r3
f(r)K. (258)

To simplify this expression, we make use of the following observations:

• We make use of Eq. (256) to rewrite the first term.

• We cannot make use of Eq. (30), and must evaluate in Mathematica the second and third
term25 as

− 2

r
rc(DcDard)f

ad = −4M

r4
f(r)(H0 −H2) = −4M

r4
f(r)H5, (259)

− 2

r
rc(Dard)Dcf

ad =
2M

r3
f(r)∂rH5. (260)

24One might argue that Eq. (21) gives a straightforward extension for d = 3, namely

Rab =
R

3
gab.

However, this is only valid for the unperturbed background spacetime. In Section 2.8.2 we were allowed to use Eq. (156)
because it holds in general for a two-dimensional manifold.

25Indeed, by taking this approach, we have strayed from the covariant method. However, while it is possible to retain
these terms in their original form, expressing them in terms of H5 allows us to explicitly recognize them as “new”
contributions, which we prefer.
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• Moreover, we rewrite

raDa

(
□̂K

)
= gbcra

(
DcDaDbK +R d

acb DdK
)

= gbcDc(r
aDbDaK)− gbc(Dcr

a)DaDbK +
4M

dr3
ra(gabg

bd − gdag
b
b)DdK

= gbcDcDb(r
aDaK)− gbcDc ((Dbr

a)DaK)− gbc(Dcr
a)DaDbK +

4M

dr3
(1− d)raDaK

= □̂(raDaK) +
2M

r3
raDaK − 2(Dbra)DaDbK +

4M

dr3
(1− d)raDaK

= □̂(raDaK)− 2M

r2
□̂K +

4M

dr3

(
1− d

2

)
raDaK +

2M

r2
∂2
zK. (261)

In the third line we again used Mathematica to evaluate that

gbc(DcDbr
a) = −2M

r3
ra, (262)

and we used that

(Dbra)DaDbK =
M

r2
□̂K − M

r2
∂2
zK (263)

in the fifth line. In the Schwarzschild limit, the third and fourth term in Eq. (261) are zero,
yielding exactly Eq. (166).

Applying these results to Eq. (258) finally yields

0 = −1

r
□̂v +

2

r3

[
λ+ 2− 2M

r

(
3− 4

d

)]
v +

1

r

(
1− 4M

r

)
□̂K

+
4M

r3

(
5

d
− 1

)
raDaK +

2λ

r3
f(r)K +

2M

r2
∂2
zK − 4M

r3
f(r)∂zH4

+
2M

r3
f(r)∂rH5 −

2M

r4

(
2− 3M

r

)
H5. (264)

In the Schwarzschild limit, this correctly reduces to Eq. (167).

Combining our results, we see that we have obtained a system in terms of the variables v, K, H4 and
H5:

0 = □̂K − 2λ

r2
K − 2

r2
v +

2M

r3
f(r)H5, (265)

0 = −1

r
raDav −

1

r2

[
λ+ 2 +

2M

dr
(d− 4)

]
v − 1

r

(
λ+

7M

r
− 8M

dr

)
raDaK

− λ

r2
f(r)K +

f(r)

2
□̂K +

1

2
□̂v +

1

2
□̂(raDaK) +

2M

r2
f(r)∂zH4 +

M

r3

(
1− M

r

)
H5, (266)

0 = −1

r
□̂v +

2

r3

[
λ+ 2− 2M

r

(
3− 4

d

)]
v +

1

r

(
1− 4M

r

)
□̂K +

4M

r3

(
5

d
− 1

)
raDaK

+
2λ

r3
f(r)K +

2M

r2
∂2
zK − 4M

r3
f(r)∂zH4 +

2M

r3
f(r)∂rH5 −

2M

r4

(
2− 3M

r

)
H5. (267)
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Eliminating v in favour of ΨZM gives us the five-dimensional equivalent of system (169):

0 = □̂K +
6M

r3
K − 2Λ

r3
(λ+ 1)ΨZM +

2M

r3
f(r)H5, (268)

0 =

[
−Λ(λ+ 1)

r2
+

30M2 + 6Mr(λ− 2)− 2λr2

r4f(r)

]
raDaΨZM

+
1

r2

[
λ(λ+ 1) +

λM

r

(
7− 8

d

)
+

6M

r
+

6M2

r2

(
1− 4

d

)]
ΨZM − Λλ(λ+ 1)

2r
□̂ΨZM

+
f(r)− Λ

2
□̂K +

1

2
□̂(raDaK)− 1

r

[
λ− M

r

(
3 +

8

d

)
+

7M

r3

]
raDaK

+
1

r2

[
λ(λ+ 1) +

λM

r

(
7− 8

d

)
+

3M

r
+

3M2

r2

(
5− 8

d

)]
K

+
2M

r2
f(r)∂zH4 +

M

r

(
1− M

r

)
H5, (269)

0 = − Λ

r2
(λ+ 1)□̂ΨZM +

2

r3

(
λ+

6M

r

)
(λ+ 1)raDaΨZM

+
2

r4

[
λ(λ+ 1) +

M

dr
(8λ− 3d) +

6M2

dr2
(4 + d)

]
(λ+ 1)ΨZM +

1

r

(
λ+ 1− M

r

)
□̂K

+
10M

r3
(d− 2)raDaK − 2

r3

[
λ(λ+ 1) +

M

r

(
3 +

8λ

d
− λ

)
+

3M2

r2

(
8

d
− 3

)]
K

+
2M

r2
∂2
zK − 4M

r3
f(r)∂zH4 +

2M

r3
f(r)∂rH5 −

2M

r4

(
2− 3M

r

)
H5. (270)

The fact that it is not possible to use simplification (30) proves to be a significant obstacle. In four
dimensions, this simplification allowed us to eliminate K from the system, leaving a single equation in
terms of ΨZM, namely the Zerilli equation. However, in five dimensions, it turns out that K cannot
be completely removed from Eqs. (268)-(270) due to certain terms in the second equation that resist
simplification or convenient reformulation. As a result, the covariant approach used in Section 2.8.2
does not produce the desired outcome in five dimensions.

Eqs. (268)-(270) do not encapsulate all the information originally present in the even-parity pertur-
bation equations. For completeness, we conclude this section by compiling the equations that contain
indispensable information about the perturbation equations.

First, we observe that Eqs. (268)-(270) are formed from the combinations

Qa
a = gabQab = − 1

f(r)
Qtt + f(r)Qrr +Qzz,

rarbQab = rrrrQrr = Qrr,

therefore incorporating only information from the trace part of Qab, i.e. Qtt, Qrr and Qzz. To account
for the missing information, we must also include the components Qtr = 0, Qtz = 0, Qrz = 0 and
QzB := Qz = 0. To this end, we evaluate the tr, tz and rz components of Eq. (251) and the
z component of Eq. (252) in the script 5d pert coordinates.nb. We find that it is relatively
straightforward to combine Qtr = 0, Qtz = 0 and Qrz = 0 into one second-order, semi-algebraic
equation (with only r-derivatives) in terms of the variables H0, H1, H2, H3 and H4 if we assume
an exponential t- and z-dependence. The explicit calculation is worked out in the script and not
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particularly illuminating to present. We state the final result:

0 = f(r)∂rH0 +
M

r2
H0 +

iM

ωr2
f(r)∂rH1 +

i

ω

[
k2 − ω2

2
− Mk2

r
+

λ+ 1

r2
− 2M

r3

(
λ+

M

r

)]
H1

− f(r)

2
∂rH2 +

M

r2
H2 −

M

kωr2
f(r)∂2

rH3 −
1

ω

[
k2 + ω2

2k
− Mk

r
+

2M

kr3
f(r)

]
∂rH3

+
M

kωr4

[
2(λ+ 1) + kr2 − ω2r2

f(r)

]
H3

− i

k

[
k2 − ω2

2
− Mk2

r
+

λ+ 1

r2
− 2M

r3

(
λ+ 2− 3M

r

)]
H4 (271)

Qz = ∂zK − 1

f(r)
∂tH3 + f(r)∂rH4 +

2M

r2
H4 + ∂zH5 (272)

Finally, we observe that the ZM function encodes information from both K and H2 when we express
v in coordinates:

ΨZM =
r

λ+ 1

[
K +

v

Λ

]
=

r

λ+ 1

[
K + f(r)

H2 − r∂rK

Λ

]
. (273)

This means that in total our new system consists of the six variables K,H0, H1, H2, H3, H4 in six
equations, Eqs. (268)-(273). Therefore, all information from the original system, Eqs. (145)-(148), is
retained.

3.9 Overview of variables in four and five dimensions

We have seen that keeping track of the number of (independent) variables and equations in the odd-
and especially the even-parity systems of perturbation equations can be challenging. To conclude this
section, we provide a comparison of the number of variables, degrees of freedom (DOF), and equations
in four and five dimensions.

The initial number of variables in four and five dimensions, that is, the total number of modes present
in the spherical harmonics decomposition, is presented in Table 2.

Schwarzschild Black string
Odd-parity h0, h1, h2 (3) h0, h1, h2, h3 (4)
Even-parity H0, H1, H2, j0, j1, K, G (7) H0, H1, H2, H3, H4, H5, j0, j1, j2, K, G (11)

Total variables 10 15

Table 2: Initial (number of) variables for both the Schwarzschild (4d) and black string (5d) spacetimes,
for both parities.

We can verify the total number of variables by considering that the perturbing metric, γµν , is a
symmetric rank-2 tensor. In a d-dimensional spacetime, such a tensor has

d(d+ 1)

2
(274)

independent components.

We have seen that the gauge vector Ξµ removes d variables, since it has d independent components.
Additionally, the Bianchi identities (which we did not discuss in this thesis) impose d constraints on
the vacuum Einstein equations, thus removing another d variables. Therefore, we are left with

d(d+ 1)

2
− 2d (275)
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independent variables, also called the physical (or dynamical) DOF. This is also the minimal number
of equations required to describe the perturbations. In four dimensions, the number of dynamical
DOF is therefore two; ΨRW and ΨZM. Both are tensor modes (on M4, which should not be confused
with the spherical harmonic tensor modes on S2) and fully describe gravitational waves emerging from
perturbations of the spacetime. We confirmed this in the first part of this thesis, when we derived that
the perturbations are fully described by two decoupled wave equations (the RW and Zerilli equations)
in terms of these functions. Based on Eq. (275), in five dimensions we expect to have five dynamical
DOF, which in this case will likely be two tensor modes, two vector modes and one scalar mode26.
The (expected) DOF in four and five dimensions are summarized in Table 3.

Schwarzschild Black string
Odd-parity ΨRW (1) ΨRW, h2 (2)
Even-parity ΨZM (1) ΨZM, vector mode, scalar mode (3)

Dynamical DOF 2 5

Table 3: Dynamical DOF for both the Schwarzschild (4d) and black string (5d) spacetimes, for both
parities.

In Section 3.7.3 we have seen that indeed the five-dimensional odd-parity perturbations are described
by the independent modes ΨRW and h2. While we have not been able to reduce the even-parity sector
to three variables, we have reason to expect that it decouples into three independent equations, one
in terms of a tensor mode, one in a vector mode and one in a scalar mode. If isospectrality were to
hold in the black string spacetime, it would be most logical that it is proven by relating the odd tensor
mode to the even tensor mode and the odd vector mode to the even vector mode, both via a proper
Darboux transform, while the scalar mode fully decouples. The tensor mode is likely to be the ZM
function, but it is not strictly necessary that it has exactly the form of Eq. (273). The specific vector
and scalar modes involved in these decoupled equations cannot be determined with the information
we currently have. The precise identification of these modes would require a more detailed analysis of
the decoupling of the perturbation equations in the even-parity sector.

26Credits to my supervisor B. Bonga for pointing this out in one of our discussions.
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4 Conclusion

We have provided a comprehensive and self-consistent review of metric perturbation theory of the
Schwarzschild spacetime. Scattered information from the literature was combined, and we verified the
well-known result that the RW and Zerilli equations are related by a Darboux (or Chandrasekhar)
transformation. We have also shown that this transformation implies that the transmission and reflec-
tion coefficients of the Darboux-related RW and Zerilli potentials are equal, and hence that the QNM
spectra of both potentials coincide. The purpose of this was to establish the groundwork for exploring
whether isospectrality would hold in a five-dimensional context.

In the second part of this thesis, we extended the metric perturbation theory framework to the black
string spacetime, a five-dimensional counterpart of the Schwarzschild black hole. This was achieved
by introducing an extra spatial dimension, independent of the coordinates. By incorporating this
additional coordinate into xa (thus transforming M2 to M3), we anticipated that the formalism
would seamlessly adapt to perturbations of this five-dimensional spacetime, introducing only a modest
increase in complexity. Indeed, we found that the decomposition into spherical harmonics could be
straightforwardly extended by adding new variables into the even-parity modes fab and ja, and the
odd-parity mode ha. In the RW gauge, we were able to eliminate four even-parity mode components
(ja and G) and one odd-parity mode component (h3), analogous to the four-dimensional case. From
there, we calculated the odd- and even-parity vacuum Einstein equations from the linearized Ricci
(and Einstein) tensors, which we could treat separately. These systems of equations could then be
decoupled in two ways: either by working in coordinates and expressing the system as a set of coupled
second-order PDEs, or by employing a covariant approach with the RW and ZM functions in their
covariant form.

For the odd-parity case, we applied both methods and, due to the manageable number of perturbation
equations and modes, were able to follow the same steps as in four dimensions without encountering
significant difficulty. Interestingly, instead of deriving a single RW equation solely in terms of the
RW function, we ended up with two coupled equations involving both the RW function and h2. The
covariant approach led to the same conclusion. The structure of the equations allowed for decoupling,
but this process required a few non-trivial steps. By rewriting the two equations in vector-matrix
form and assuming an exponential t- and z-dependence for the RW function and h2, we were able
to construct a diagonal matrix D with relatively simple eigenvalues on the diagonal. We discovered
that the matrix A = P−1DP decouples the system, allowing us to write down two fully independent
wave equations for the RW function and h2. This hinged on the fact that D and P commute, which
seemed like a mere coincidence, as there is no obvious a priori condition (that we know of) that would
guarantee such commutation.

In the even-parity case, the introduction of new variables and perturbation equations presented sub-
stantial challenges. Decoupling the system of vacuum Einstein equations in coordinates proved to be
exceedingly difficult due to the large number of equations (10), variables (7), and the numerous mixed
derivatives involving the z-coordinate. Although we were able to reduce the number of variables from
seven to six by eliminating H5 in favour of H0 and H2 (thanks to the new trace condition) this sim-
plification did not significantly ease the process. An attempt was made in the Mathematica script
5d pert coordinates.nb to make the equations semi-algebraic by introducing an exponential t- and
z-dependence, but fully decoupling the equations remained a futile attempt. An effort to decouple the
system covariantly by following the detailed four-dimensional calculations in Martel [9] also did not
yield the desired result.

It is clear that we have not been able to definitively prove or disprove isospectrality of the QNM fre-
quencies of black strings. While the formalism we used is well-suited for extending the submanifold M2

to higher dimensions, the calculations have shown to become considerably more complex when adding
just one extra dimension without any dependence on the existing coordinates, which is particularly
evident in the even-parity case. However, we do not rule out the possibility that isospectrality could
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hold in the black string spacetime. We anticipate that a proper decoupling of the even-parity system
will lead to three independent equations: one for ΨZM, one for a vector mode, and one for a scalar
mode. It may be possible to relate the odd tensor mode to the even tensor mode, and the odd vector
mode to the even vector mode, with the the scalar mode decoupling entirely.

Throughout this thesis, we have refrained from making any assumptions regarding the type of per-
turbations we considered. In hindsight, one could propose that it is possible to focus on less general
perturbations. For instance, Gregory [1] considers only spherically symmetric perturbations, which
involve no cross terms with the angular coordinate in γµν . Such a simplification makes it impossible
to prove isospectrality, as the odd-parity sector of the spherical harmonics would trivially vanish (see
the footnote on page 39).

A potentially simpler approach could be to consider radial perturbations, i.e., perpendicular to the
string’s axis and therefore independent of the z-coordinate. While this might simplify the perturbation
equations, it makes us blind to potentially interesting effects that could arise from perturbations along
the z-direction. Even if one were able to prove isospectrality in this restricted case, it is quesionable
whether this is actually a useful result. Real perturbations of black strings will almost never be fully
independent of the z-direction. Therefore, demonstrating isospectrality for a very limited subset of
perturbations would not serve as conclusive evidence for isospectrality as a general property of black
strings. In this light, we believe it is crucial to avoid making simplifying assumptions about the types
of perturbations considered.

We should also acknowledge that we did not make use of the Bianchi identities in our calculations.
These identities impose additional constraints on the perturbation equations and could potentially
assist in decoupling the even-parity system of vacuum Einstein equations by reducing the number of
independent variables. For future investigations, we recommend considering the application of the
three even-parity Bianchi identities, as described by Martel’s [9]. They may be a valuable tool for
simplifying and further advancing the analysis of the even-parity sector.

It is also possible that a different function, other than the covariant ZM function given in Eq. (142),
decouples the five-dimensional system. However, the literature on systematic methods for identifying
such a decoupling function is quite limited, and finding one may require a challenging process of trial
and error. (see [14] for finding the Zerilli function in a slightly different context).

In some last remarks, we would like to acknowledge that the formalism of metric perturbations is
limited by factors that we have not touched upon in detail. While these limitations do not directly
affect the proof of isospectrality for a given spacetime, they are important to keep in mind. For
example, as noted in Section 2.5, in the spherical harmonic decomposition restricts the sum over the
mode label ℓ to ℓ ≥ 2, since ℓ = 0 and ℓ = 1 modes are non-radiative and require special treatment.
Additionally, we have worked within the framework of linear perturbation theory, which may overlook
physical phenomena present at higher order.

Decoupling the even-parity perturbation equations of the black string may hold the key to proving
isospectrality in this five-dimensional spacetime. For now however, the answer remains elusive.
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B APPENDIX: SPHERICAL HARMONICS

A Appendix: Notation conversion table

We chose to adopt a slightly different notation than Martel [9] and Martel & Poisson [21], of which we
make use extensively in this thesis. In order to translate between this thesis and their works, we list
the most important notational differences in the table below.

Quantity This thesis Martel [9] Martel & Poisson [21]

Partial derivative ∂ , ∂
Covariant derivative of gµν ∇ ; Not defined
Covariant derivative of gab D : ∇
Covariant derivative of ΩAB D | D
Perturbation metric γµν hµν pµν
Even-parity field fab pab hab

Even-parity field ja qa ja
Vector harmonic YA ZA YA

Vector harmonic ΩABY UAB ΩABY
Tensor harmonic YAB VAB YAB

Tensor harmonic XAB WAB XAB

Table 4: Notational differences for (covariant) derivatives, perturbation quantities and spherical har-
monics. Martel’s derivatives are written as subscripts. We chose to adopt the same notation as Martel
& Poisson for the spherical harmonics.

B Appendix: Spherical Harmonics

Spherical harmonics are a special type of functions defined on the surface of the two-sphere (S2).
They come in three types (scalar, vector and tensor) which refers to the way they transform under a
coordinate transformation on S2. As their name implies, scalar harmonics are invariant under these
kinds of transformations, whereas vector harmonics change in accordance with the transformation
rules of a vector and tensor harmonics in accordance with the transformation rules of a tensor. Every
function on the sphere can be expressed as a sum of harmonics since each type forms a complete and
orthonormal basis on S2.

The spherical harmonics can also be divided according to their parity. There are two parity modes:
even and odd.

• Even-parity modes are modes that are symmetric under inversion, meaning

Y ℓm(−θ, ϕ) = Y ℓm(θ, ϕ). (276)

This is true if they transform as

Y ℓm(π − θ, π + ϕ) = (−1)ℓY ℓm(θ, ϕ) (277)

with ℓ an integer number.

• Odd-parity modes are those that are antisymmetric under inversion, so

Xℓm(−θ, ϕ) = −Xℓm(θ, ϕ). (278)

This is true if they transform as

Xℓm(π − θ, π + ϕ) = (−1)ℓ+1Xℓm(θ, ϕ). (279)
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Here ℓ and m are integers, with ℓ ≥ 0 and −ℓ ≤ m ≤ ℓ. It is well-known that the ℓ = 0 and ℓ = 1
mode are non-radiating in the context of black hole perturbations, and therefore ℓ ≥ 2 in this thesis.

The division of harmonics by their parity is of great convenience in the study of linear perturbations
in a spherically symmetric background, where they are naturally prohibited from mixing. In this
appendix we will explain the basic properties of spherical harmonics needed in our study of black hole
perturbation theory. This is a summary of the relevant information from Martel’s Appendix A [9].

B.1 Scalar spherical harmonics

Scalar spherical harmonics are the “usual”, well-known functions Y ℓm, and are defined by the eigen-
value equation

DADAY
ℓm = −ℓ(ℓ+ 1)Y ℓm. (280)

These harmonics can be used to decompose a scalar function S(xA) on S2 as

S(xA) =
∑
ℓ,m

sℓmY ℓm(xA). (281)

The coefficients sℓm can be found using the orthonormality relations for spherical harmonics (see [9]).

B.2 Vector spherical harmonics

Vector spherical harmonics come in two flavours; even parity, defined by

Y ℓm
A := DAY

ℓm, (282)

and odd parity, defined by
Xℓm

A := −ε B
A DBY

ℓm. (283)

Here, εAB is the Levi-Civita tensor on S2. It is defined via the Levi-Civita symbol ε̃AB as [37]

εAB =
√

|detΩAB |ε̃AB =

(
0 sin θ

− sin θ 0

)
, (284)

such that the only non-zero components are εθϕ = −εϕθ = sin θ. Since εAB is totally anti-symmetric
(εAB = −εBA), we have to be careful with the order of the indices in this tensor., as opposed to
symmetric matrices like gab and ΩAB . The Levi-Civita tensor obeys

DCεAB = 0, (285)

which can be seen by writing out each of the individual components.

Any vector function VA(x
B) can be decomposed in vector harmonics as

VA(x
B) =

∑
ℓ,m

{
vℓmY ℓm

A (xB) + wℓmXℓm
A (xB)

}
. (286)

The coefficients vℓm and wℓm are again determined by the orthogonality relations. Vector harmonics
of even parity and odd parity are always orthogonal, since [21]∫

Ȳ A
ℓmXℓ′m′

A dΩ = 0, (287)

where the bar indicates complex conjugation and dΩ := sin θdθdϕ is the volume element on S2.
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B.3 Tensor spherical harmonics

To describe the perturbation component γAB in this thesis (a symmetric rank-2 tensor with three
independent components), we need three rank-2 tensor spherical harmonics. We can describe the
trace (scalar) part by ΩABY

ℓm, which has the transformation properties of even-parity modes. The
non-trace part of γAB can be described by two distinct combinations. The even-parity combination is

Y ℓm
AB :=

[
DADB +

ℓ(ℓ+ 1)

2
ΩAB

]
Y ℓm, (288)

while the odd-parity combination is

Xℓm
AB := −1

2

(
ε C
A DB + ε C

B DA

)
DCY

ℓm. (289)

Together they form a complete and orthogonal basis for symmetric rank-2 tensors. This means that
generally one can decompose any symmetric tensor TAB(x

C) as

TAB(x
C) =

∑
ℓ,m

{
V ℓmΩABY

ℓm +W ℓmY ℓm
AB + U ℓmXℓm

AB

}
. (290)

The functions V ℓm, W ℓm and U ℓm again satisfy orthogonality relations. The harmonics themselves
are orthogonal (but not orthonormal) with respect to each other:∫

Ȳ AB
ℓm Xℓ′m′

AB dΩ = 0, (291)∫
Ȳ AB
ℓm ΩABY

ℓ′m′
dΩ = 0, (292)∫

X̄AB
ℓm ΩABY

ℓ′m′
dΩ = 0. (293)

B.4 Identities

In this section we derive some properties that are needed in the derivation of the perturbation equations,
providing short clarifying derivations. In these derivations we will use the square bracket above two
covariant derivatives,

DADB , (294)

to indicate that they are commuted in the next step. We use Eqs. (26)-(28) and the Riemann tensors,
Eqs. (18) and (19), whenever we perform such a commutation.

The identities for Y ℓm
A are rather straightforward to prove, since Y ℓm is a scalar function. Therefore,

the covariant derivatives working on Y ℓm may freely be commuted. We have

DBY
ℓm
A = DBDAY

ℓm = DADBY
ℓm = DAY

ℓm
B , (295)
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which means that the tensor object DBY
ℓm
A is symmetric. Eq. (280) furthermore implies that

DAY ℓm
A = DADAY

ℓm

: = −ℓ(ℓ+ 1)Y ℓm, (296)

DAD
BY ℓm

B = DA

(
−ℓ(ℓ+ 1)Y ℓm

)
= −ℓ(ℓ+ 1)Y ℓm

A , (297)

DBDBY
ℓm
A = DBDAY

ℓm
B

= DAD
BY ℓm

B +RB C
AB Y ℓm

C

= −ℓ(ℓ+ 1)Y ℓm
A +

(
ΩB

BΩ
C
A − ΩBCΩAB

)
Y ℓm
C

= [1− ℓ(ℓ+ 1)]Y ℓm
A . (298)

By a similar analysis for the odd-parity vector harmonics, we obtain

DAXℓm
A = −ε B

A DADBY
ℓm = 0, (299)

DBDBX
ℓm
A = −ε C

A DBDBY
ℓm
C

= −ε C
A [1− ℓ(ℓ+ 1)]Y ℓm

C

:= [1− ℓ(ℓ+ 1)]Xℓm
A , (300)

DBDAXB = ΩBCDCDA

(
−ε E

B DEY
ℓm
)

= −εCEDCDADEY
ℓm

= −εCE
(
DADCDE +R F

CAE DF

)
Y ℓm

= −DA

(
(((((((
εCEDCDEY

ℓm
)
− εCE

(
ΩCEΩ

F
A − ΩF

CΩAE

)
DFY

ℓm

= −�
�εCCDAY

ℓm + εFADFY
ℓm

= −ε F
A DFY

ℓm

= Xℓm
A . (301)

Here we used that the derivative of the Levi-Civita tensor is zero. For the first and third identities we
also used the anti-symmetry of the Levi-Civita tensor, which means for instance that contracting εAB

with the symmetric tensor quantity DADBY
ℓm gives zero.

For the tensor harmonics, one can show using Eq. (288), (289) and (280) that

ΩABY ℓm
AB = 0 = ΩABXℓm

AB . (302)
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C Appendix: Covariant derivatives of (co-)vectors and
(co-)tensors in the M2 × S2 split

In this thesis we make use of covariant derivatives of (co-)vectors and (co-)tensors in terms of quantities
on M2 and S2. The expressions below can be found in a different notation in [9], but for completeness
we include them here in our notation.

We start with the first-order covariant derivatives. ∇αv
β has components [39]

∇av
b = ∂av

b + Γb
acv

c = Dav
b,

∇av
B = ∂av

B + ΓB
aAv

A = Dav
B +

1

r
rav

B ,

∇Av
b = ∂Av

b + Γb
ABV

B = DAv
b − rrbΩABv

B ,

∇Av
B = ∂Av

B + ΓB
ACv

C + ΓB
Acv

c = DAv
B +

1

r
rcδ

B
Avc.

(303)

We used here that Da works on vB as a scalar, as does DA on vb, such that we express the final
results in terms of covariant derivatives instead of partial derivatives. Similarly for the co-vectors, the
components of ∇αvβ are

∇avb = ∂avb − Γc
abvc = Davb,

∇avB = ∂avB − ΓA
aBvA = DavB − 1

r
ravB ,

∇Avb = ∂Avb − ΓB
AbvB = DAvb −

1

r
rbvA,

∇AvB = ∂AvB − ΓC
ABvC − Γc

ABvc = DAvB + rrcΩABvc.

(304)

The same procedure also applies to higher derivatives and derivatives of higher-rank tensors. First-
order covariant derivatives on a rank-2 tensor tµν , are

∇at
bc = Dat

bc,

∇at
bC = Dat

bC +
1

r
rat

bC ,

∇at
BC = Dat

BC +
2

r
rat

BC ,

∇At
bc = DAt

bc − gcartbBΩABDar − gbarrat
BcΩAB ,

∇At
bC = DAt

bC +
1

r
raδA

Ctba − gbarrat
BCΩAB ,

∇At
BC = DAt

BC +
1

r
δA

BtaCDar +
1

r
raδA

CtBa,

(305)

where δA
B is a Kronecker delta. On a co-tensor tµν , we obtain

∇atbc = Datbc,

∇atbC = DatbC − 1

r
ratbC ,

∇atBC = DatBC − 2

r
ratBC ,

∇Atbc = DAtbc −
1

r
rbtAc −

1

r
rctbA,

∇AtbC = DAtbC − 1

r
rbtAC + rraΩACtba,

∇AtBC = DAtBC + rraΩABtaC + rraΩACtBa.

(306)
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The first-order derivatives are not needed in the calculations of the perturbation equations, but are
used to calculate second-order derivatives of rank-2 tensors. On a tensor with two lowercase Latin
indices we obtain

∇c∇dtab = DcDdtab,

∇A∇ctab = DADctab −
rc
r

(
DAtab −

4

r
r(atb)A

)
− 2

r
r(aD|c|tb)A,

∇c∇Atab = ∇A∇ctab −
2

r
(D(ar|c|)tb)A,

∇B∇Atab = DBDAtab −
2

r
r(aDBtb)A − 2

r
r(aDAtb)B +

2

r2
rarbtAB

+ rrcΩAB

(
Dctab −

2

r
r(atb)c

)
,

(307)

and on a tensor with one lowercase Latin index and one capital index we find

∇c∇btaA = DcDbtaA − 2

r
r(cDb)taA − 1

r

(
Dcrb −

2

r
rbrc

)
taA,

∇B∇btaA = DBDbtaA − 2

r
rbDBtaA − ra

r

(
DbtAB − 3

r
rbtAB

)
+ rrcΩAB

(
Dbtac −

rb
r
tac

)
,

∇b∇BtaA = DBDbtaA − 1

r
(Dbra)tAB + rΩAB(Dbr

c)tac,

∇C∇BtaA = DCDBtaA − 2

r
raD(Ct|A|B) + rrb

(
ΩBCDbtaA − ra

r
ΩABtbC

)
+ rrb

(
2ΩA(CDB)tab −

2

r
ΩBCr(atb)A − 2

r
ΩACr(atb)B

)
.

(308)

Finally, on two lowercase capital indices we obtain

∇b∇atAB = DbDatAB − 4

r
r(bDa)tAB +

6

r2
rarbtAB − 2

r
DbratAB ,

∇C∇atAB = DCDatAB − 3

r
raDCtAB + 2rrbΩC(A

(
DatB)b −

2

r
ratB)b

)
,

∇a∇CtAB = DCDatAB + 2r(Dar
b)ΩC(AtB)b,

∇D∇CtAB = DDDCtAB + 2rra(ΩC(ADDtB)a +ΩD(ADCtB)a)− 2rara(ΩD(AtB)C +ΩCDtAB)

+ 2r2rarbΩD(AΩB)Ctab + rraΩCDDatAB .

(309)

Note that the round parentheses indicate symmetrization and | · | means the index · is left out of the
symmetrization process.

D Appendix: Explicit calculation of Linearized Ricci and Ein-
stein tensors

In this appendix, we will derive the covariant components of the linearized Ricci tensor and Einstein
tensor in terms of the dimension d = 2, 3, where d = 2 corresponds to the Schwarzschild case, and
d = 3 to the black string. We make use of the fact that the odd- and even-parity sectors of the spherical
harmonic decomposition, Eqs. (84) and (105), are the same in four and five dimensions in the RW
gauge (in four dimensions, the RW gauge allows us to remove the modes h2, ja and G, while in five
dimensions we can remove h3, ja and G).
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Starting with the odd-parity perturbation equations, we insert the spherical harmonics expansion of
Eqs. (84) into Eq. (52), which gives

δR
(odd)
ab = Dm�

�Cm
ab +

2

r
rm�

�Cm
ab − 1

2
DaDb��γ

m
m − 1

2r2
DMDM��γab +

1

2r2
DM

(
Daγ

M
b + Dbγ

M
a

)
− 1

2r2
DaDb��γ

M
M +

1

2r3

(
raDb��γ

M
M + rbDa��γ

M
M

)
− 1

r4
(rarb − rDarb)��γ

M
M

=
1

2r2
DM

(
Daγ

M
b + Dbγ

M
a

)
=

1

2r2
(Dahb + Dbha)����DMXM

= 0. (310)

In the first step, many of the terms were directly zero by virtue of Eq. (84). The last step gives zero
because of property (299). Similarly, Eq. (53) becomes

δR
(odd)
aB =

1

2
DB

(
Dm��γ

m
a − Da��γ

m
m +

1

r
ra��γ

m
m

)
− 1

2

(
(∧)

□ γaB − DmDaγ
m
B

)
− 1

r
(raDmγm

B − rmDaγ
m
B )

− 1

r2
(rarm + rDarm) γm

B +
1

2r2
DM (DBγaM −DMγaB) +

1

2r2
Da

(
DM��γ

M
B −DB��γ

M
M

)
− 1

r3
ra

(
DM��γ

M
B −DB��γ

M
M

)
=

[
−1

2
□ha +

1

2
DbDahb −

1

r
raD

bhb +
1

r
rbDahb −

1

r2
rar

bhb −
1

r
hbDaD

br

]
XB

+

[
1

2r2
haD

ADB

]
XA −

[
1

2r2
haD

ADA

]
XB

=

[
− 1

2

(∧)

□ ha +
1

2
DaD

bhb −
1

r
raD

bhb +
1

r
rbDahb −

1

r2
rar

bhb

− 1

r
hbDaD

br +

(
ℓ(ℓ+ 1)

2r2
+

2M

r3d

)
ha

]
XB . (311)

In the last step, we commuted the covariant derivatives in the second term as

DbDahb = gbcDcDahb

= gbc
(
DaDchb +Rcabdh

d
)

= DaD
bhb +

4M

r3d(d− 1)
gbc (gcbgad − gcdgab)h

d

= DaD
bhb +

4M

r3d
ha,

and for the last two terms we used properties (300) and (301) from Appendix A. The d’Alembertian

operator
(∧)

□ is to be identified as □ if d = 2 and □̂ if d = 3.
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Finally, Eq. (54) becomes

δR
(odd)
AB = ΩAB

[
rraDb

(
��γ
ab − 1

2
gab��γ

m
m

)
+ (rarb + rDarb)��γ

ab

]
− 1

2
DADB��γ

a
a

+
1

2
Da (DAγ

a
B +DBγ

a
A) +

1

r
raΩABDMγaM − 1

2

(∧)

□ ���γAB +
1

r2
DM���CM

AB − 1

2r2
DADB��γ

M
M

+
1

r
raDa

(
���γAB − 1

2
ΩAB��γ

M
M

)
− 2

r2
rara

(
���γAB − 1

2
ΩAB��γ

M
M

)
=

1

2
Da (DAγ

a
B +DBγ

a
A) +

1

r
raΩABDMγaM

=
1

2
Daha (DAXB +DBXA) +

1

r
raΩABha����DMXM

= −1

2
Daha

(
εFBDA + εFADB

)
DFY

:= [Daha]XAB . (312)

We continue with the even-parity case. Inserting Eqs. (105) into Eq. (52), we obtain

δR
(even)
ab = DmCm

ab +
2

r
rmCm

ab −
1

2
DaDbγ

m
m − 1

2r2
DMDMγab +

1

2r2
DM

(
Da��γ

M
b + Db��γ

M
a

)
− 1

2r2
DaDbγ

M
M +

1

2r3
(
raDbγ

M
M + rbDaγ

M
M

)
− 1

r4
(rarb − rDarb) γ

M
M

=
1

2
Dm (Dbf

m
a + Daf

m
b − Dmfab)Y +

1

r
rm (Dbf

m
a + Daf

m
b − Dmfab)Y

− 1

2
DaDbf

m
mY − 1

2r2
fabD

MDMY − 1

2r2
DaDb

(
r2ΩM

MK
)
Y

+
1

2r3
(
raDb

(
r2ΩM

MK
)
Y + rbDa

(
r2ΩM

MK
)
Y
)
− 1

r4
(rarb − rDarb)

(
r2ΩM

MK
)
Y

=

[
1

2
Dm (Dbf

m
a + Daf

m
b − Dmfab) +

1

r
rm (Dbf

m
a + Daf

m
b − Dmfab)−

1

2
DaDbf

m
m

+
ℓ(ℓ+ 1)

2r2
fab −

1

r2
DaDb

(
r2K

)
+

1

r3
(
raDb

(
r2K

)
+ rbDa

(
r2K

))
− 2

r2
(rarb − rDarb)K

]
Y

=
1

2

[
DbDmfm

a +
8M

r3d(d− 1)
(dfba − gbaf

m
m ) + DaDmfm

b −
(∧)

□ fab

+
2

r
rm (Dbf

m
a + Daf

m
b − Dmfab)− DaDbf

m
m +

ℓ(ℓ+ 1)

r2
fab

− 2

r
(rbDaK − raDbK)− 2DaDbK

]
Y. (313)

In the third step, the covariant derivatives in the first term were commuted according to Eq. (26).
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We also have

δR
(even)
aB =

1

2
DB

(
Dbγ

b
a − Daγ

b
b +

1

r
raγ

b
b

)
− 1

2

(
(∧)

□ ��γaB − DbDa��γ
b
B

)
− 1

r

(
raDb��γ

b
B − rbDa��γ

b
B

)
− 1

r2
(rarb + rDarb)��γ

b
B +

1

2r2
DM (DB���γaM −DM��γaB )− 1

2r2
Da

(
DMγM

B −DBγ
M
M

)
− 1

r3
ra
(
DMγM

B −DBγ
M
M

)
=

1

2
DB

(
Dbf

b
a − Daf

b
b +

1

r
raf

b
b

)
Y +

1

2r2
Da

(
DM (r2KΩM

B Y )−DB(r
2KΩM

MY )
)

− 1

r3
ra
(
DM (r2KΩM

B Y )−DB(r
2KΩM

MY )
)

=
1

2
DB

(
Dbf

b
a − Daf

b
b +

1

r
raf

b
b

)
DBY − 1

2r2
Da(r

2K)DBY +
1

r
raKDBY

=
1

2

[
Dbf

b
a − Daf

b
b +

1

r
raf

b
b − DaK

]
YB . (314)

Lastly,

δR
(even)
AB = ΩAB

[
rraDb

(
γab − 1

2
gabγm

m

)
+ (rarb + rDarb) γ

ab

]
− 1

2
DADBγ

a
a

+
1

2
Da

(
DA��γ

a
B +DB��γ

a
A

)
+

1

r
raΩABDM�

��γaM − 1

2

(∧)

□ γAB +
1

r2
DMCM

AB − 1

2r2
DADBγ

M
M

+
1

r
raDa

(
γAB − 1

2
ΩABγ

M
M

)
− 2

r2
rara

(
γAB − 1

2
ΩABγ

M
M

)
= ΩAB

[
rraDb

(
fab − 1

2
gabfm

m

)
+ (rarb + rDarb) f

ab

]
Y − 1

2
fa
aDADBY − 1

2

(∧)

□ (r2K)ΩABY

+
1

2r2
DM

[
DB(r

2KΩM
A Y ) +DA(r

2KΩM
B Y )−DM (r2KΩABY )

]
− 1

2r2
DADB(r

2KΩM
MY )

+
1

r
raDa(r

2KΩABY − 1

2
ΩABr

2KΩM
MY )− 2

r2
rara(r

2KΩABY − 1

2
ΩABr

2KΩM
MY )

= ΩAB

[
rraDb

(
fab − 1

2
gabfm

m

)
+ (rarb + rDarb) f

ab

]
Y − 1

2
fa
aDADBY − 1

2

(∧)

□ (r2K)ΩABY

+
1

2
K(DADBY +DBDAY − ΩABD

MDMY )−KDADBY (315)

=

[
rraDbf

ab − 1

2
rrbDbf

m
m + rarbf

ab + rDarbf
ab − 1

2

(∧)

□ (r2K) +
1

2
ℓ(ℓ+ 1)K

+
1

4
ℓ(ℓ+ 1)fa

a

]
ΩABY − 1

2
fa
aYAB . (316)

The Einstein tensors are calculated in a similar manner but require significantly more work. For these
we use Eqs. (55)-(57) and expand them in spherical harmonics. The multipole expansions for each
individual term can be found in Appendix B.2 of Martel [9], which can be translated to our notation
using the notation conversion in Table 4. We merely state the final results, of which we only need the
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even-parity part in this thesis:

δG
(even)
ab =

[
DcD(bf

c
a) −

1

2
gabDcDdf

cd − 1

2
DaDbf

c
c − 1

2
(
(∧)

□ fab − gab
(∧)

□ f c
c )

+
2

r
rc(D(bf

c
a) − gabDdf

cd)− 1

r
rc(Dcfab − gabDcf

d
d ) +

ℓ(ℓ+ 1)

2r2
fab

− 1

2
gab

(
2

r2
rcrdfcd +

2

r
(Dcrd)f

cd +
ℓ(ℓ+ 1)

r2
f c
c

)
− DaDbK + gab

(∧)

□ K

− 2

r
r(aDb)K +

3

r
gabr

cDcK − 1

2
gab

(
− 2

r2
(r

(∧)

□ r + rcrc) +
ℓ(ℓ+ 1)

r2
K

)]
Y, (317)

δG
(even)
aB =

1

2

[
Dbf

b
a − Daf

b
b +

1

r
raf b

b − DaK

]
YB (318)

δG
(even)
AB =

1

2
r2
[
(∧)

□ fa
a − DaDbf

ab − 2

r
rbDaf

a
b +

1

r
raDaf

b
b − ℓ(ℓ+ 1)

2r2
fa
a +

2

r
raDaK+

(∧)

□ K

]
ΩABY

− 1

2
fa
aYAB . (319)

Clearly, (317)-(319) are equal27 in four and five dimensions up to the dimensionality of the d’Alembertian
operator (one can check that all identities in Martel’s Appendix B.1 and B.2 hold in both four and
five dimensions since they are derived using only the Christoffel symbols, which are identical in four
and five dimensions). The even- parity part of Eqs. (317)-(319) can be identified simply by the parity
of the harmonics.

27Note that e.g. fab does change in five dimensions compared to four, but this effect is only evident when we actually
insert the coordinates, revealing the new variables H3, H4 and H5.
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Addendum

In the final stages of writing this thesis, we have noticed that it was a fundamental mistake to assume
that M3 has constant curvature, and thus the validity of Eq. (195). Working out explicitly the left-
and right-hand-side of (195) shows that they are not equal (up to a factor of 3). Therefore, the addition
of a uniform spatial dimension does in fact induce non-constant curvature.

The implications of this mistake are that some of the calculations of Section 3 are incorrect. When
commuting covariant derivatives, we were not allowed to use Eq. (195) for the Riemann tensor. Inves-
tigating the components of Rabcd in four and five dimensions shows that the non-zero components are
unaffected. We therefore expect that the main results of Section 3 only differ in certain prefactors. For
example, the odd-parity master equations (245) will likely be affected only in the numbers appearing
in the potentials, while the overall structure remains unaffected. The results are therefore still useful in
the sense that they prove that the odd-parity sector can be decoupled into two independent equations,
although their exact form should be slightly corrected.
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