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Abstract

Metric perturbation theory serves as a powerful tool for exploring the mathematical prop-
erties of black holes. In this work, we present a comprehensive and notationally consistent
review of the formalism and apply it to the Schwarzschild black hole, both in a covariant
framework and within a specific coordinate system. To handle the most computationally
demanding steps, we develop a dedicated script in MATHEMATICA. Within this formalism,
we derive the Regge-Wheeler and Zerilli equations and explicitly demonstrate that their
potentials are connected through a Darboux (or Chandrasekhar) transformation. The ex-
istence of such a transformation demonstrates that the equations are isospectral, meaning
that the potentials have the same spectrum of quasinormal-mode frequencies. We extend
the Schwarzschild metric with one extra spatial dimension to construct the five-dimensional
metric of a black string. Following the methodology used in four dimensions, we examine
the presence of isospectrality in five dimensions. Our analysis reveals that the odd-parity
perturbation equations can be decoupled into two independent equations. However, due to
the large number of equations and variables, we are unable to fully decouple the even-parity
perturbation equations. As a result, it remains an open question whether the black string
spacetime exhibits isospectrality.
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1 INTRODUCTION

1 Introduction

In our everyday experience, we perceive the universe as consisting of four dimensions: three describing
space and one representing time, which together form the fabric of spacetime. Spacetime can be curved,
creating the effect we recognize as gravity, a phenomenon elegantly described by Einstein’s General
Theory of Relativity (GR). Despite its extraordinary accuracy, GR cannot currently be reconciled with
quantum theory. The search for a unifying theory, a theory of Quantum Gravity, has become a major
focus of research and is often referred to as the “holy grail” of theoretical physics. One promising
approach to merging GR and quantum theory involves rethinking our understanding of gravity itself.
Over recent decades, researchers have proposed various (sometimes unconventional) solutions to this
unification puzzle, including theories suggesting that gravity may operate in higher dimensions.

One of the earliest higher-dimensional theories of gravity was Kaluza-Klein theory, which aimed to unify
gravity and electromagnetism within a single framework. It proposed the existence of an additional
spatial dimension, bringing the total number of spacetime dimensions to five. This extra dimension,
however, would be curled up into a tiny circular shape, making it nearly impossible to detect. In this
model, the additional dimension manifests itself as an electromagnetic field [1, 2].

Kaluza-Klein theory laid the foundation for the development of (Super-)String Theory (ST). ST extends
the ideas of Kaluza-Klein theory by suggesting that spacetime has even more dimensions. To maintain
mathematical consistency, ST requires a ten-dimensional universe, consisting of nine spatial dimensions
and one temporal dimension. Similar to Kaluza-Klein theory, these extra dimensions are compactified
into minuscule, circular strings. The inclusion of additional spatial dimensions enables gravity to be
incorporated alongside the other three fundamental forces (that is, the electromagnetic, weak, and
strong forces), and in fact, ST requires GR in order to be consistent [3]. In these models, gravity can
propagate through the extra dimensions that the other forces do not interact with or do so much more
weakly. This could potentially explain why gravity is significantly weaker than the other fundamental
forces and provides a framework for unification at higher energy scales.

While ST has made significant strides toward formulating a theory of Quantum Gravity, it has some
severe shortcomings; it remains unverified experimentally and faces major mathematical and concep-
tual hurdles, such as reproducing the Standard Model of particle physics. The main experimental
challenge arises from the fact that the six extra spatial dimensions form a compact space on the order
of the Planck length, making them them far too small to be detected with current technology [3]. To
determine whether higher dimensions exist, we must therefore investigate their effect on macroscopic
objects, such as black holes.

If higher dimensions exist, black holes would also extend into these dimensions and could exhibit
properties that differ from their four-dimensional versions [4]. Some of these unique features might
even be observable in high-energy experiments through interactions with Standard Model fields [5-8].
Studying the properties of higher-dimensional black holes could thus offer valuable clues about the
validity of ST as a higher-dimensional theory of gravity.

One approach to studying the properties of black holes is through perturbation theory. A perturbation
refers to a small, sudden deformation of a black hole’s shape, which can occur when two black holes
merge or when matter falls into it. As the black hole settles back into equilibrium, it emits gravitational
waves with specific frequencies that gradually decay over time. These characteristic oscillations, known
as quasi-normal modes (QNMs), provide a unique signature of the perturbed black hole and can be
observed through gravitational wave detections [9].

Several well-established formalisms exist for describing black hole perturbations, each offering distinct
advantages depending on the specific application, such as stability analysis, gravitational wave emis-
sion, or the study of binary systems. There are numerous extensions of these formalisms accounting
for certain properties of the black hole spacetime, including rotation [10], charge [11, 12], and dimen-
sionality [13-15]. For the fundamental case of a four-dimensional Schwarzschild black hole, pioneering



1 INTRODUCTION

contributions were made by Regge and Wheeler [16], Vishveshwara [17], Zerilli [18] and Chandrasekhar
[19, 20]. Later, Martel and Poisson [21] developed a comprehensive formalism that is covariant and
gauge-invariant, integrating and refining key results from earlier work. This thesis will employ their
formalism.

The standard method for analyzing metric perturbations in Schwarzschild spacetime involves decom-
posing the metric into two-dimensional submetrics: a Lorentzian manifold and a spherically symmetric
subspace [9]. Perturbations are introduced via a perturbing metric, which is then expanded using
spherical harmonics. This allows for the separation of the angular component and the classification of
perturbations into two distinct parities: even and odd. By solving the perturbed (vacuum) Einstein
equations in these decompositions, one finds the well-known result that they reduce to two indepen-
dent wave-like equations with a potential, each corresponding to a specific parity. The Zerilli equation
governs even-parity perturbations, while the Regge- Wheeler (RW) equation describes odd-parity per-
turbations. At first sight, these equations appear different and unrelated. Interestingly though, it can
be shown that they are in fact related and therefore share an identical spectrum of QNM frequen-
cies, a phenomenon known as isospectrality. This property was first identified by Chandrasekhar and
Detweiler [22]. Isospectrality in a given spacetime can be established by demonstrating the existence
of a mathematical transformation between even- and odd-parity perturbations, known as the Chan-
drasekhar transformation. This was recently demonstrated to be a special case of the more general
Darboux transformation by Glampedakis et al. [23].

While isospectrality holds for classical black hole spacetimes such as Schwarzschild, Reissner-Nordstrom
and Kerr, this generally not true for black holes in alternative theories of gravity [24]. Several studies
have reported the breaking of isospectrality in such alternative theories, with recent investigations
presented in Ref. [25-28]. However, this does not imply that extensions of GR inevitably break
isospectrality; a recent study by Cano and David [29] indicates that certain extensions of GR do, in
fact, preserve it. If isospectrality is broken, this could lead to observable effects in gravitational wave
data (for details on how this manifests, see Ref. [30, 31]). As a result, detecting such deviations could
provide valuable insights into the possible existence of alternative theories of gravity.

To assess whether ST is a viable higher-dimensional theory of gravity, we can examine whether isospec-
trality holds in ten-dimensional black holes. However, starting at such a high dimensionality is clearly
impractical. A more feasible approach is to first study lower-dimensional cases, such as five-dimensional
ST, where black holes are known as black strings. his thesis will therefore investigate isospectrality
within the black string spacetime.

The first section of this thesis provides a comprehensive and self-contained review of the theory of
metric perturbations in Schwarzschild spacetime, formulated in a way that allows for extension to
higher dimensions. Using the formalism developed by Martel and Poisson [21], we derive the odd-
and even-parity perturbation equations, reduce them to the Regge-Wheeler and Zerilli equations, and
demonstrate their isospectrality.

In the second section, we apply this formalism to the black string spacetime, following the same steps
to determine whether a similar transformation exists between odd- and even-parity perturbations. The
calculations presented in this thesis are partially carried out using three custom-developed MATHE-
MATICA scripts: 4D_PERT_COVARIANT, 4D_PERT_COORDINATES and 5D_PERT_COORDINATES [32].
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2 Metric Perturbations of the Schwarzschild Spacetime

As mentioned in the introduction, there are several approaches to studying perturbations of black
hole spacetimes. In this section, we adopt the formalism of metric perturbations developed by Martel
and Poisson [9, 21]. This choice is motivated by its relatively simple and well-structured extension to
higher dimensions (at least in principle). Such an extension is essential, as working in five dimensions
introduces a greater number of metric components and corresponding equations. While other widely
used formalisms, such as the Newman-Penrose (or Geroch-Held-Penrose) approach, have been extended
to higher dimensions in recent studies [15, 33-35], they are not particularly user-friendly, making the
Martel-Poisson formalism a more practical choice for our analysis.

In this section, we derive the RW and Zerilli equations for the Schwarzschild metric and show that the
QNM frequencies in this spacetime are isospectral, carefully outlining the various steps involved in the
process. The goal of this comprehensive review is primarily to combine and present in a self-consistent
manner the information scattered throughout the literature, as intermediate calculations are seldom
included due to their complexity, despite the fact that they often contain non-trivial or subtle details.
Once this detailed analysis of the four-dimensional case is complete, we extend the procedure to the
higher-dimensional black string spacetime, following a similar approach, in Section 3.

The process of applying the formalism of metric perturbations to the Schwarzschild spacetime is
outlined in Figure 1, reflecting the structure of this thesis. In the following section, we will show how to
decompose a four-dimensional metric into two-dimensional submetrics, separating the (¢, r)- and (0, ¢)-
coordinates. Section 2.2 focuses on applying a linear perturbation to the Schwarzschild metric g, in
the form of a perturbing metric v,,. We make explicit in Section 2.3 the covariant derivatives of each
metric, discuss the commutation relations, and provide some useful identities that will be important
for the subsequent analysis. Then, in Section 2.4 we derive the linearized curvature quantities, such as
the Christoffel symbols, Ricci tensor, and Einstein tensor. By setting each component of the linearized
Ricci tensor to zero, we obtain a system of linearized vacuum Einstein equations. We specifically need
the Einstein tensors for the even-parity sector, as will be explained in Section 2.8.2. In Section 2.5, we
expand the perturbing metric 7, in terms of spherical harmonics, separating it into an odd- and even-
parity sector. Section 2.6 will discuss the gauge freedom for each parity and demonstrate how applying
the Regge-Wheeler gauge can eliminate some of them. We then insert the gauge-fixed expressions for
the perturbing metric—expanded into spherical harmonics and separated by parity—into the vacuum
Einstein equations. The resulting system of coupled PDEs can, remarkably, be decoupled, yielding the
RW equation for the odd-parity sector (Section 2.7) and the Zerilli equation for the even-parity sector
(Section 2.8).

We will discuss two methods for decoupling each system: (1) by inserting the Schwarzschild coordi-
nates into the covariant vacuum Einstein equations and solving the system as a set of coupled partial
differential equations (PDEs), or (2) by rewriting the system in its covariant form and introducing the
covariant RW and Zerilli functions (a method developed in [9]). Both approaches will be worked out
in detail for completeness.

Terminology and notation in the literature are frequently a source of confusion. While many authors use
the terms axial or magnetic to refer to odd-parity perturbations, and polar or electric for even-parity
ones, we will avoid using these terms. Additionally, we have chosen a slightly different notation from
the Martel-Poisson formalism to minimize potential confusion with overlapping symbols. A detailed
correspondence between this thesis and their work is provided in Appendix A. Throughout this thesis
we will adopt natural units (¢ = Gy = 1) and use the mostly-plus convention for the Minkowski metric
(= +++).
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Figure 1: Flowchart visualizing the steps involved in the formalism of metric perturbations of the
Schwarzschild spacetime. The number of degrees of freedom (DOF) are indicated in the last steps.
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2.1 M? x 8% decomposition

Due to the spherical symmetry of the Schwarzschild spacetime, it is possible to decompose the metric
into radial and angular components, allowing us to treat the perturbations of each part separately. In
this context, the line element can be expressed as

1
ds* = —f(r)dt* + mdﬁ + r2(d6? + sin? 0d¢?) = gapdx®dax® 4 r*Qpdaz’da®, (1)
r
where oM
f)=1-24 )

and M the mass of the black hole. In this decomposition, the four-dimensional manifold M* will be
represented as a product of two-dimensional submanifolds, that is, M* = M? x S2. Here M? refers
to the submanifold spanned by the ¢ and r coordinates, and S? is the submanifold of the two-sphere
spanned by the angular coordinates 6 and ¢. The lowercase Latin indices are used to represent ¢ and

r,

x* = (t,r), a=0,1, (3)
while the capital Latin indices run over the angular coordinates,
zt = (0,9), A=23. (4)
The four-dimensional metric g,,,, has coordinates indicated by Greek indices, i.e. z# = (20,21, 2% 2%) =
(t,r,0,¢), and its components are given by
o = {ng ggB} _ [ggb T2£AB] ’ g = {ggb 923} _ {ggb 7‘128143] ' )
Here Q45 represents the metric on the unit two-sphere:
dQ? = df? + sin® 0d¢* = Qapdrda®. (6)

The lowercase Latin indices are lowered and raised using the metric g,; and its inverse g?°, respectively.
Similarly, the capital Latin indices are raised and lowered using Q4p and Q42. Since both gq, and
QO ap are symmetric matrices, we will not worry about the spaces in the index placement and write,
for example, g® instead of g,” and QF instead of 2 ,Z.

2.2 Linear perturbations

Suppose now that the metric g, is linearly perturbed by a small quantity v,, (i.e. |y | < 1), such
that the perturbed metric gfj, and its inverse take the form?

gﬁ,, =9uv + Yuvs (8)
S )
The perturbing metric v, and its inverse account for perturbations in both the (¢,r)-components

and the (0, ¢)-components. We make no assumptions regarding the nature of the perturbation. In
particular, we allow for the perturbing metric to have cross terms:

b 1,.aB
_ Yab YaB uyo ’Ya TT’Y 10
Yuv [va ’YAB:| Y [7}27Ab %47,43 ( )

n Section 2.6 it will become clear that we are allowed to replace the mode variables by their gauge-invariant versions.
The tilde “ ~” is then dropped for notational brevity.
2There is a minus sign in the inverse perturbed metric since

A A
gE,Vng = 61/7 (7)

which holds to first order in 7, only if we take the above definitions.
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Just like the background metric g,,,,, the perturbing metric is symmetric (7., = 7,,). The components
of the inverse perturbing metric are obtained by raising the indices of +,,, with the background metric.
For example:
1 1
gabgAB'YbA — gabﬁQAB,ybA _ ﬁ,_yaB' (11)

Clearly, we have

4 pab __ _ab ab
g =9 =7
g%y = Gab + Vab, )
4 paB _ _ ~ _aB
Y9bp = Yan, (12) g TR (13)
40P 120) 1 1
gap =7 Q4B +74B, 4gpAB:§QAB_747AB_

where the superscript “*” indicates that the metric belongs to M?. This way we avoid confusion
between the ab-component of g,,, and gqp, a component of the metric of M?2. Since both submanifolds
are two-dimensional, a superscript “2” would be ineffective. We therefore write quantities defined
with respect to gqp and Q 4p without this additional index.

2.3 Basic definitions

In this formalism, where linear perturbations are introduced and the metric is split, we can derive
the key quantities needed for the study of metric perturbations. We begin by listing the covariant
derivatives associated with each (sub-)metric, followed by the relevant curvature quantities (Christoffel
symbols, Riemann tensor, Ricci tensor, and Ricci scalar). We discuss the proper way to commute
covariant derivatives of the submanifolds and provide useful relations that help to simplify calculations
in Schwarzschild coordinates.

2.3.1 Covariant derivatives

Covariant differentiation is defined independently on each manifold, requiring us to define separate
covariant derivative for each metric. We denote these covariant derivatives as summarized in Table 1.

Manifold M= M2 xS? | M? | §?
Metric Juv Gab QAB

Covariant derivative Vi D, Dy

Commutes with - Dy | D,

Table 1: A list of the symbols with which we indicate the manifolds and their respective metrics and
covariant derivatives. By definition, the covariant derivatives are compatible with their respective
metrics, meaning Z,gs. = 0 and DQpc = 0.

The covariant derivative &, commutes with D4 because 245 does not depend on t or r, and gqy is

independent of 6 or ¢. Furthermore, any quantity that depends only on x® is covariantly constant with

respect to the Christoffel symbols associated with Z,, and quantities depending solely only on 4 are

covariantly constant with respect to the Christoffel symbols of D4. This means for example that
DAT = O7

DAgab = 07 (14)
@aQAB = 0
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2.3.2 Christoffel symbols

The Christoffel symbols belonging to V,, are 41";)1,. It is straightforward to show using the definition
of the Christoffel symbols,

1
F;);u = §g>\a [ap«gotl/ + al/gau - aaguz/] P (15)

and the components of the full metric, Eq. (5), that the only non-zero components are

T =T,
4F‘f3c = —r*Qpc,
, (16)
4F1§c = fégv
41A A
I'se =Tge-

Note that Christoffel symbols with lowercase Latin indices always belong to Z,, and ones with capital
Latin indices belong to D 4. In Schwarzschild coordinates, the Christoffel symbols are explicitly

r M -
4Fit = _4Fr7‘ = ﬁf(r) 1’
M

4F§t:7§f(7’)a

4Fg’¢ = cot 0, (17)
1

41 4r

I'yy=—-"T,, = —1f(r),

00 sin29 foYo) f( )

1 1

410 _ a6 _4pd _

Por = 2 Too = Tor = -

2.3.3 Riemann tensors, Ricci tensors and Ricci scalars

The non-zero components of the full Riemann tensor (*R,,,,,), Ricci tensor (*R,,,,) and the Ricci scalar
(*R) are given in [36], but we will not make use of them in this thesis. We do however make use of
the Riemann tensors of the submanifolds®:

%abcd - ) (gacgbd - gadgbc)7 (18)

_7

d(d—1
Rapep = Qaclep — Qappe. (19)

Here, % is the Ricci scalar of the submanifold M. For the submanifold M?, the Ricci tensor is

4M

X = 3 (20)
such that oM
%abcd = rT(gucgbd - gadgbc)~ (21)

We should remark that (18) is only valid for spacetimes with constant curvature. This form of the
Riemann tensor follows from the fact that a double contraction of its indices in a general dimension d
should yield the Ricci scalar:

99" B eq = B9 (Gacbd — Gaagve) = R (d* — d). (22)

Clearly we have to divide by d(d — 1) to obtain the Ricci scalar.

3These Riemann tensors are not the components of the Riemann tensor belonging to guv, but belong to the submetrics
Jab and Qap.

10
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Note that in general for a two-dimensional manifold

x
'%ab = Egabv (23)

based on symmetry arguments® (the Riemann tensor has only one independent component in two
dimensions). In higher dimensions this relation does not hold, since the Riemann tensor will have
more independent components.

2.3.4 Commuting covariant derivatives of the submanifolds

It is important to note that %, and D4 do not commute with themselves. When we commute two
covariant derivatives belonging to the same submanifold, a Riemann tensor term will appear (which is,
indeed, a way to define curvature) [9]. This is readily seen by considering the action of a commutator
of covariant derivatives of M? on a tensor X (of arbitrary rank) in the absence of torsion [37]:

cime-cy
mabX

(s Do) Xy g =+ B X B drdy o

— {@m XCI"'Ck _ %m Xclmck _ (24)
diab mdz---d; daab dim---d;

An extra term appears for each additional index on X.

In this thesis, we will be concerned only with vectors and rank-2 tensors. When commuting two
covariant derivatives acting on a co-vector v, (24) tells us that

DaDyve — Dy Dave = —R%, 04
- abcdvd7 (25)
while for a rank-2 tensor t,5, the commutation gives
-@a-@btcd - -@bgatcd - *%mcabtmd - %mdabtcm

Here, we have utilized the symmetries of the Riemann tensor to arrange the indices conveniently. When
commuting covariant derivatives belonging to S2, we obtain a similar expression:

DaDpvc — DpDave = RypcPvp, (27)

DsDgtep — DpDatep = Ragc™tup + Rapp™Mtenr. (28)

2.3.5 Useful relations

To maintain covariance in our calculations, we introduce the covector r, := Z,r = 9,r = (0,1), which
enables us to express the function f(r) in a covariant manner as

rra =g"" = f(r). (29)

On the other hand, when working in Schwarzschild coordinates we can make use of the fact that

M
Dary = ﬁgabv (30)
2M

The four-dimensional d’Alembertian operator is defined as 0 := ¢?*%,%,. Note that relation (30)
only holds in four dimensions.

4The same formula can also be obtained by contracting the first and third indices of the Riemann tensor, Eq. (18),
and using d = 2. This however only holds if the spacetime has constant curvature. Equation (21) is generally true for a
two-dimensional manifold. Coincidentally, the two are the same.

11
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2.4 Linearized curvature quantities

In this section, we derive the perturbed curvature quantities. We begin by linearizing the Christof-
fel symbols, which allows us to compute the linearized Riemann tensor, Ricci tensor, Ricci scalar,
and Einstein tensor. Subsequently, we evaluate the Ricci and Einstein tensors within the M2 x S2%-
decomposition.

5

The four-dimensional vacuum Einstein equations® are given by

1
G/LV = R,uu - ig,uyR = 0. (32)

A contraction with g" shows that R = 0 and hence
R,, =0. (33)

This means that perturbations of the background spacetime are fully described by the components of
the perturbed Ricci tensor,
0R,, = 0. (34)

As we will see in Section 2.8, it is more practical to work with the full Einstein tensors in the even-parity
sector and use

6G, = 0. (35)

We will first derive the covariant form of the perturbed Ricci tensor and Einstein tensor in terms of
Yuv- To this end, we first need the perturbed Christoffel symbols:

Pr}w = 4Fjw + 5rfw. (36)

The linearized connection is [16]

1
5F2u = 59)\& (v,u")/au + vu'Yoc,u - Vofﬂw) . (37)

A

. . e . . sl 1s
We omit the superscript “*” on linearized quantities like 61",

as we understand that the perturbation
is always carried out on the full background spacetime. The components of 6Fﬁy are calculated using
the first-order covariant derivatives of a rank-2 tensor in Eqgs. (306) in Appendix C, and are given by

oy, = Cy,,
a 1 ac 1 a
e = 29 (Zvyec + DeYeo — Devve) — el

1
e = i(DB'Yg’ + Devgy — Pvpe) — rrepey™,

ST = 55 (P + Fenit — D), %)
dTje = %(@Wé + Dyt — Dye) — T%Tb’yé,
T = T%Cgc + %raQBC'VAa»
where
O = 3 (Do + Dt — D), (39)
Che = % (Devi + Dpyé — Dypo) - (40)

5In the calculations that will follow, we could include a source term in the form of a stress-energy tensor Tj..
This would complicate the calculations significantly. For a clear account of how to include such a source term in the
calculations, see [21].
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2 METRIC PERTURBATIONS OF THE SCHWARZSCHILD SPACETIME

Similarly, the Ricci tensor of the perturbed spacetime is
4
PR, = "Ry +0R,,. (41)
A general expression for the linearly perturbed Riemann tensor is® [38]
wrp vlp

OR,,, = =2V, (aT3,)., (44)

and the linearized Ricci tensor is simply its contraction of the upper and middle-lower indices,

6By = =2V, (313, ) (45)

and the linearized Ricci scalar is
d (QWRW) = (dg"") Ry + QWCSRW (46)
=g""éR,. (47)

where we used that the Ricci tensor of the background vanishes in a vacuum spacetime. We can now
express the perturbed curvature quantities in terms of the perturbing metric using Eq. (37):

Ry, = =V Vv = ViVie o) + ViV %,

v

48

1 1
6R#V = _§4D’yl“’ — ivﬂvyﬁy;\ + V)\V(’u’yli\), 49

SR = 'Ol + V, V4", 50

(48)
(49)
(50)
Ly AL a1 PO A
0Gu = D) Uy + ViV — §vvvu7/\ - §gMV (V V3% — D'VA) ) (51)
where we denoted the antisymmetrization and symmetrization with square brackets and round brackets
respectively, and vertical bars | - | indicate that we exclude the index - from the (anti-)symmetrization

process. We identify the four-dimensional d’Alembertian operator as 10J := VAV .

6The antisymmetrization of a rank-2 tensor is defined as
1
T[,uu] = §(T[.Ll/ - Tu,u)v (42)

and the symmetrization as

1
T(l“’) = E(ij + Tyu). (43)

13



2 METRIC PERTURBATIONS OF THE SCHWARZSCHILD SPACETIME

By evaluating Eqs. (49) and (51) in the M? x S2-split, making use of the MATHEMATICA script
4D_PERT_COVARIANT.NB, we are able to reproduce the results in Appendix D of Martel and Poisson
[21]. The components of the linearized Ricci tensor are found to be:

1
— DM Doy + =5 Dt (2t + 27 M)

2 1
ORuw = D Cly + ~Tm = —@a.@w;z 5,2

22
1 1
2,3 (ra 2721 + 10 ZaVit) — a (rato — TDaTs) VA1 5 (52)
1 1 1
0R.B = §DB (—@m%;n — DoV + 7]'(1'7%) ~ 3 (0vaB — ZmPaVE)

1 M
- ﬁ-@w@b'yM

1 1
- ; (’ra-@mvg - Tm-@a’ygl) - ﬁ (TaTm + T@arm) 'YB + 7DM (DBfYaM - DM’VaB)

9,2
1 1
- ?9 (DM’YB - DB’YM) —=3Ta (DMVB - DBVM) (53)
1
dRAB = QB |:7"7"a@b (7 29“%23) + (rary +17PaDyr) ’Yab] - iDADB'Vg
1 a a 1 aM 1 1 M
+ 5% (Davp + Dpvi) + —raQapDuy™” = 58van + 5 DuCiajp
1 2 1
DADB’YM + *T'I@a (’)’AB - QQAB'YI\A//[I) - 7727‘“% <'YAB - QQAB’YJ]\\4/I> . (54)
The components of §G,, are:
1 c 1 c 2 c 1 c d c 1
0Gab = 59abNE = 5D0Pac + =1 DMy + —1° (b ZeVd = DeVab) + De (oY) = 50ab

1 2 1 1
— gab | =(Zare)V°t + ZreDay* + reray™ = s 2aP7 ) + jD D 4 (9abVE = Yab)
T T T 2 2r

1 1
+t3 (QT(aDA%ﬁ - gazﬂ“cDA%A) +DaP(ai) — rjgabDA%WCA

1 1 1 r?—1
+ 5 9a (D’yﬂ - erBDA’Yz\AZI + 7nzDBDB’yj‘) + ?rarb'yﬁ
1 1, 2r24+1 o, 1 a1 N
+ 573 Jab (DT - 7‘c> Ya T+ o5 JabT A ;T(a%))%\ - Egb@aVAa (55)
2 2

1 1—r re+1 1
0Gap = ?TaDB”YIl; - DBQ[HE] + TTbT(a%)B + " Daryon — ;(%Ta)%%

1 1 1—7r 1 1
- *Ta%v% + f.%.@w% + T(DT)%B - *D%B + iDADB'Yf
2

1-—
2 2D DA’YaB + raDA’YB + 9 DA"YB]’ (56)

1 1
0Gap =1r*Qap (2@(1711; — @b72> — 57,201439})@(17(11; + §QAB (T‘QD’}/Z + DMDM'Y;)

1
- §DBDA'Y:11 + ZDaDavhy — apDu 2" + r* (DavB)a + LanDarra")

2

1 1-— 1
— 2r%ryyaB — ﬁraraQAB'y% + (Or)vans + (DT)QAB’}/M + fr W YAB

r?+1 agy M L L o M M1 M
27“ Qapr®Zavy — 5Uvap + 57 Qusbtya + DuDavp) — 5DsDavu
1
52 (D Dyyas + QapDnDyy™V) + §QABDMDM’Y% (57)

We can verify these equations by performing the evaluation manually, which is done by substituting
Egs. (38) into Eq. (45). As pointed out by Spiers et al. [39], in doing so we must proceed with caution,
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2 METRIC PERTURBATIONS OF THE SCHWARZSCHILD SPACETIME

especially with terms that involve contractions. These terms should first be expanded into a d + 2
form. Only after this expansion can we assign the free indices to either M2 or S2. For illustration,
consider the following contraction:

1
g#VVH'YVp — gabva’ybp + EQABVA’}/BID
Only now are we are allowed to choose p = c:

. 1 2 1
g“ vp,'yuc = gab@a’}/bc + ﬁQABDA’VBc + ;Ta%c - T73Tc'7£-

2.5 Decomposition into spherical harmonics

So far, we have not yet taken advantage of the spherical symmetry of the Schwarzschild metric. This
symmetry naturally lends itself to use a special class of functions, spherical harmonics, which are defined
on 8% and have well-known properties. Spherical harmonics come in three versions; scalar, vector and
tensor harmonics [21]. This decomposition introduces two parities — even and odd — which describe
the behaviour of the functions under a coordinate transformation on S2. A detailed discussion of the
properties of these harmonics can be found in Appendix B. Decomposing the metric perturbations into
spherical harmonics offers a key advantage: the spherical symmetry of the background ensures that
modes with different parity do not mix, allowing the perturbation equations to be derived independently
for each parity [9].

The perturbing metric components are decomposed as follows:

Yab = Z ﬁgn(tar)yemv

lm
Yaa = D L TYA™ + ()X (55)
lm
YAB = Z {TQKZm(t, r)QABYzm + TQGem(t, r)Yf;’g + hgm(t, r)Xf{%
Lm
where
= ) b))

= (i) o
= (i) o

The even-parity spherical harmonics are Y™, Yfim, QagY?" and Yfi’g. The odd-parity spherical
harmonics are Xf‘m and Xf\”é. As a result, there are seven even-parity modes (Hgm, H{™, H{™, jgm,
jim, K™ and G*™) and three odd-parity modes (h§™, h{™ and h5™), which are all functions of x?,
meaning they are defined only on M? [40]. We restrict our work to ¢ > 2, because £ = 0 and ¢ = 1
are non-radiating and require special treatment [9].

At this point, Egs. (58) can be inserted into Eqgs. (52)-(54) and (55)-(57). However, before proceeding
with this substitution, we first take advantage of the gauge freedom inherent to our theory.

15



2 METRIC PERTURBATIONS OF THE SCHWARZSCHILD SPACETIME

2.6 Gauge transformations

In the spherical harmonic decomposition of our four-dimensional spacetime, there are ten mode com-
ponents: h{™, him, pE™ HE™ H{™ HE™ G6m, j4m ) K9 and GP™. By exploiting the gauge freedom of
our theory, we can eliminate three even-parity components and one odd-parity component [9]. In this
section, we demonstrate how this simplification is achieved by imposing the so-called Regge- Wheeler
(RW) gauge.

In general, we can find the gauge degrees of freedom (DOF) by considering an infinitesimal coordinate
transformation generated by a vector field Z# (the gauge vector):

at — - =R (62)

It is well known that under such coordinate transformation, the change of the perturbation tensor field
is the Lie derivative of that tensor field with respect to Z* [41]:

Yuv — ’V;/w = Yuv + »CEguV = Y + g)\uv,uE)\ + gu/\qu)\ = Vv + 2V(#Ev)~ (63)

In the formalism of the metric split, the gauge transformations are generated by a dual vector field
Z, = (E4,Z4). This means that the components of the perturbation field transform as

Yab — Yap = Yab — 29(aE), (64)
- - — — 2

YaB — Yo = YaB — Va=B — VBEa = YaB — ZuE5 — D=, + ~TaZB; (65)

YAB — Vap = VaB — 2D(4Ep) — 2rr°QapE., (66)

where we have made use of Eqgs. (304) from Appendix C. It can be shown that Eqgs. (52)-(57) are all
invariant under these transformations when the background Ricci tensor *R,,, vanishes [21] (as they
should given the Stewart-Walker lemma [40]).

The gauge vector =, can also be divided into vectors with even and odd parity:

= — E Im~fm
—a — ga Y 9
£,m

Y4 v Y4 0 (67)
Ea =Y {&mvim e xiny,
Lm

such that the even-parity modes are &§™, &™ and &5, and the odd-parity mode is £5™. These
are all functions of z®. We will now examine how the perturbing metric transforms under a gauge
transformation in both the even and odd parity sectors.

2.6.1 Odd-parity gauge transformations

By the division of Eq. (67), the odd-parity gauge transformations are generated by the gauge vector
—(odd) __ —(odd) .
=n ) =(0,2,""), with

—=(odd
25 = emxi. (68)
£,m
Since ELOdd) contains one arbitrary function (£5™), it can be used to gauge fix one of the odd parity

metric perturbations. By substituting Eq. (68) into Egs. (65) and (66), we find that the odd-parity
sector of the perturbing metric transforms as follows:

2
Yo — Vap = ha" XB" = D" XE" + Tra&g" Xg" = b XE",

(69)
Yap — Yap = hs" XA — 265" D XY = hy" X4 — 265" XA = hy™ XA
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2 METRIC PERTURBATIONS OF THE SCHWARZSCHILD SPACETIME

This means that
2
ha™ — W™ = hq" — Dafs™ + ~ras™, (70)
hy™ — hiy™ = hy™ — 265" (71)
Gauge-invariant quantities are derived by taking a linear combination of these transformation equa-

tions, ensuring that the terms involving &5 on the right-hand-side are eliminated. We denote these
gauge-invariant quantities with a tilde “ = ”:

1
2

Transforming these two quantities according to (70) indeed shows that they are unchanged.

. 1
ha™ = ha™ = 5 Pah™ + —rahs™. (72)

Eq. (71) demonstrates that it is always possible to select a gauge where h5™ = 0 by choosing §§m =
%hém. This particular choice is referred to as the RW gauge. Setting h8™ = 0 in Eq. (72) leads to

hem = hém, (73)
him = pim, (74)

indicating that, within the RW gauge, the modes hém and hf™ are equal to their gauge-invariant
counterparts. Consequently, we can replace hém and h{™ by their gauge-invariant versions to recover
gauge invariance of the final results” [9].

2.6.2 Even-parity gauge transformations

The even-parity gauge transformations are generated by the gauge vector EELeven) = (El(leven)7 E(jven)),
with
E((Ieven) — Zfﬁmyém’
L,
—(even) . Im~/fm (75)
=A = 252 Ya™.
lm

This means that the even-parity gauge vector contains three arbitrary functions (£§™, &™ and &5™)
that can be used to fix three components of the metric perturbations. Similarly as in the odd-parity
case, we substitute Eqgs. (75) into Egs. (64), (65) and (66) to see that the even-parity modes transform
as

ab = for" = o = 294" (76)
Ja" = A" =" = € = afs™ + ST, (77)
Kem SN K/ém _ Kém 4 E(f 42_ 1) gm _ g,ra tl;m’ (78)
r r
2
GEm SN Glém _ GEm _ ngm (79)
r
The gauge-invariant quantities are
rZd ¢ v r’ 0
ab =fab' — Da (Jb‘)m - 2%@”‘) ; (80)
~ {(6+1 2 2
Kfm :Kém + ( ;— )GZm _Zpa <J(l;m _ g@anm> ) (81)
r

"This is of course only possible if the final results themselves are gauge invariant. In a vacuum background spacetime,
the linearized vacuum_Einstein equations are gauge invariant by the Stewart-Walker lemma, we are allowed to replace
ho and hi by ho and hy and call the final result gauge invariant [40].
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By choosing &5m = ’"Q—ZGZ’” and ¢m = jim g@anm, we can set j™ = 0 and G = 0. This
corresponds to the RW gauge in the even-parity sector. From Egs. (80) and (81), it then follows that
in the RW gauge,

for = fai (82)

K = K™, (83)

With this knowledge, we are ready to compute the RW and Zerilli equations. From this point onward,
we will omit the summation over £ and m on all the relevant quantities mentioned above for notational
convenience (it will remain implicit). Additionally, we will drop the overhead tilde on the mode

variables, since we can always substitute their gauge-invariant versions to recover gauge invariance of
the final results.

2.7 Regge-Wheeler equation
The odd-parity sector of Eq. (58) in the RW gauge is

odd

Véb ) = 07
VY = ha(t,1) X 4, (84)
(odd) —0.

To derive the RW equation, we first need to express Egs. (52)-(54) in terms of the odd-parity harmonics
from (84). A detailed calculation in terms of the dimension d is given in Appendix D. We now focus
on the results for d = 2 and simplify the equations as much as possible. To this extent, we make use
of the fact that

—fhb@ P'r = —;72 <Z‘1)> = —%hu (85)
to simplify 6R$§id) and obtain
SRS =0
SRV — —Ohg + 2aP°hy, + = (r Dl — 10 Dhy) — 2 rarhy + E(“ l)ha Xg,  (86)
SRCID = 0 = [27h,) X ap.

We have simply equated each component to zero to arrive at the vacuum Einstein equations, resulting
in two coupled equations in the variables h,. There are in principle two ways to decouple them:

1. we could either evaluate both equations in a specific coordinate system and solve them as a
system of coupled PDEs (the brute force way),

2. or we can introduce two functions that decouple the system naturally in its covariant form (the
clever way).

For the sake of completeness, we will work out both approaches, starting with method (1). The advan-
tage of this approach is that the algebraic manipulations required are conceptually simple. However,
as the equations tend to be lengthy, the calculations can be cumbersome, especially in the even-parity
case where there are more equations and variables. Therefore, we will also explore method (2). The
advantage of this approach is that it significantly reduces the length of the expressions we have to
deal with. Covariant expressions also provide a clearer view of how the equations will behave when
we extend them to higher dimensions. We will see later in this thesis however that also the covariant
method is ponderous in the even-parity sector.
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2.7.1 Decoupling in coordinates

We begin developing method (1) by evaluating Eqgs. (86) in Schwarzschild coordinates. This evaluation
is carried out using the MATHEMATICA script 4D_PERT_COORDINATES.NB, which produces the following

results:
SR = 0= [f (r) (—63ho - [EL + ﬂ &hl) + (4(@; D_ 4;‘5) ho] X4,
SREI — o — % [—f(lr) [aT - ﬂ Duho + L= 13? 24 f(lr) 8t2h1} Xa, (87)
SRGEY = 0= [f(lr)atho +0, [f(r)hﬂ} Xap.

It can be proven that the first equation is a consequence of the other two, and therefore does not
provide any new information [40]. System (87) can be rewritten into a single equation for hy. To
demonstrate this, we first decouple the angular part from the equations, which is in this case trivial®.
We can then rewrite the third equation as

Otho = f(r)0r [f(r)ha], (88)
and substitute it in the second equation, which gives

-1 +2)

08+ 7 (0= 2) G0 ) - =0 (59)

f(r) flr

This result can be written more compactly by introducing a clever choice of function; the Regge- Wheeler
function
f(r)

r

r

\I/RVV = hl . (90)

Eq. (89) can then be rewritten into the Regge- Wheeler equation, a wave equation with an associated
potential:

(0 — Vaw) Yrw = 0, (91)
L0+1 6M
VRW = ( 7‘2 ) - 7"73 (92)

The d’Alembertian operator on M? in Schwarzschild coordinates is given by

1
UUgrw : = \/7_—9(% (V-9 gabab\I/RW)
= 0:(9" 0, Urw) + i (9" 0 Urw)
1, ,  2M
= —_—— - \Ij ,
(- 08+ £ + B0, ) 03)
where g := detg,, = —1 is the determinant of ggp.

The RW equation can be expressed as a one-dimensional Schrodinger-like equation. This is achieved
by transforming from the radial coordinate r to the tortoise coordinate r*, assuming an exponential
time dependence. Specifically, we define the transformation as

dr
g =) (94)

8The angular part has no dependency on the other coordinates (and vice versa), so it can be set to zero independently,
making this part trivially satisfied. If a source term were present on the right-hand side, removing the spherical harmonic
component of the field equations would be less trivial. In that case, the angular part is separated by integrating over
the two-sphere and using orthonormality relations obeyed by the spherical harmonics, as discussed in [9].
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such that 5 P P 5
2 r 9N _dr o 5
% = 5= (550w ) = i (10035 = 10202 4 F(0)0f0 )0 (95)
Assuming the RW function has a time dependence of the form e~ ™, we can write
\I/Rw(t, 7’) = \Iwa(T’)eith, (96)

such that (91) can be written as

d2\IIRW 2 «
T+ [0 = Vi ()] Yrw = 0. (97)
Note that the associated potential differs from (92) by a factor of f(r):
Viw () = f(r)Vaw (r). (98)

This concludes the decoupling of the odd-parity equations in coordinates. The RW function in the
form of Eq. (97) is needed to prove isospectrality in Section 2.9.1.

2.7.2 Decoupling covariantly

The system can be decoupled covariantly by introducing the covariant form of the RW function. This
approach ensures that the equations remain in a form that is manifestly covariant, allowing for a more
general analysis without needing to rely on specific choice of coordinates. The covariant RW function
329

is

1
\IIRW = ;’I"aha. (99)

Contracting the second equation in (86) with r~1r® using Eq. (29) and using 2%h, = 0 (which follows
from the third equation in (86)), we obtain

1
3

0= <_Dha - frb@ahb> = 5 RA() — 1) "R (100)

Our goal is to express this equation in terms of the covariant RW function. For the first term this can
be done by bringing »~'r® over the d’Alembertian operator towards h,:

1 1 1
~r0Oh, = ¢*° 2. (r“@bha> — ¢*(Dyha) D (Ta>
r r r
be 1 a 2 b b, .a 2
=9"°D.Dy ;r hq T—r ° Dyhg — f(.@ YDpha — —r rPryhg
2 b,.a 1 a a
+ r—zrb(@ rYhe + 2T (Or)h, — f(Dr Yha
1 a b .a 1 1 b .a
=0 T ha | — 7(9 )Doha — —rr Oryhe —|— (271 )h,
1 a a b a
+or (Or)hg — ;(Dr Yha + ;r Dy (rr ha)
2 4M
=0OVrw + ;Tbgb\I/Rw + TT\IIRW' (101)
In the second step we worked out all derivatives, in the third step we used that

2 2 2 1
7 Dyhg — —rir Oryhe —|— (2% ) hy = ;Tb.@b <r1“aha) ) (102)

9Some authors (like Regge and Wheeler [16] themselves) define this function with a negative sign, which is purely
conventional. We choose to adopt the definition without a minus sign as in Martel and Poisson [21].

20



2 METRIC PERTURBATIONS OF THE SCHWARZSCHILD SPACETIME

and in the last step we inserted Eq. (99) and used Eq. (30) to show that

2 2M
—;(@bra)@bha =5 2"hs, (103)

=0

We rewrite the second term in (100) as
2 1 1 1
S Dahy = = (Do | =rPhy ) — =1(Dar® )by + =7 1oy
r2 T T r2

r2

M
(r“@a\IIRW — —Sr“ha + ) r“ha)
r

SIN I 3N

2 3M
= —r*P,Vrw + 2 <1 — T> Urw, (104)

where we made use of relations (29) and (30) to go from the first to the second line. Substituting
results (101) and (104) into Eq. (100) gives us exactly Eq. (91) with the correct potential.

This concludes the discussion of odd-parity perturbations of the Schwarzschild spacetime. It is evident
that both methods require roughly the same amount of effort to derive the RW equation. In the next
section, we will apply both approaches to the even-parity sector, aiming to obtain the Zerilli equation.
This process will be considerably more challenging due to the additional variables and perturbation
equations involved.

2.8 Zerilli equation

The approach to finding the Zerilli equation slightly differs from the one we adopted in the odd-parity
sector. In Section 2.8.1, where we decouple the even-parity perturbation equations in coordinates, we
malke use of the components of R, in the vacuum Einstein equations, similarly to the odd-parity case.
However, for covariant decoupling, which we explore in Section 2.8.2, we work with the components of
0G . The latter allows us to closely follow the calculations in Martel’s Section 2.5.1 [9] and facilitate
direct comparison with his results.

To derive the Zerilli equation, we first express Egs. (52)-(54) in terms of the even-parity harmonics
from (58) in the RW gauge, that is, in terms of
(even) Y.
Yab = f ab( ,7“) )
,y((lfj;'en) —0, (105)
G = K 1 nY.

An explicit calculation is relegated to Appendix D. We find that the resulting vacuum Einstein equa-
tions are
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even m 4M m 1 m 1
6R((1b ) = [@b@mf 3 (.fba - gbafm) + iga@mfb - *Dfab
+ ;T'm (.@bfa + .@afb - 9 fab) - iga.@bfm —|— ( )fab

1 1
— ;T‘b@CLK — ;Ta@bK - @a@bK:|Y

1 1 (106)
ORG™ = 0= {%ff; = Dafy + rafi = %K] Ya,

n 1 1
SRYE™ = 0= [m@b Fo - irrb.@b fi - rarof* 4+ rPure f — SO(PK)

1 1
56(6—1— K + €(€+ l)fg} QapY — if‘fYAB'

From the third equation, we can see that the terms multiplying Q245Y and Ysp have to be zero
individually (QapY and Yap are by definition orthogonal). This means that from the latter we obtain
a condition on the trace of fgp:

0= fg =Tr(far) = —Ho+ Hy — Ho = Ho. (107)
This allows us to eliminate f¢ when working covariantly, or to remove either Hy or Hy when working
in coordinates.
2.8.1 Decoupling in coordinates

In this section, we decouple the even-parity perturbation equations according to the method described
by Zerilli'? [43]. Similarly to the odd-parity sector, we start by evaluating the non-zero components of
Egs. (106) in Schwarzschild coordinates using the script 4D_PERT_COORDINATES.NB. Extracting the
spherical harmonic functions and imposing the trace condition, we obtain a system of coupled PDEs:

£(€+1)
O:——azKJr 8K 75‘2 —mé)Q —73H+ H
fr) 2f(r)" Ho o ’ ’
2r —3M
LL+1)
0:— Qf( ) atK 0:0,. K + 8,5H0+ o2 Hyq,
_ 2 2 f(r) o 1 (0+1) M
0=—f(r)o: K+72f( )8 e Ho + 9 —=0-Hy+ T8TH0+ o2 Hy r2f(r)8tH1
— 0;0-Hy — 72 GTK, (108)
r
2M
0= 8tK + 8,5H0 — f(T)arHl - TTHL
2M 1
0=0.K —0.Hy— r2f(r)H0+ r )8,5H1,
0= iafK—f( )82K+M&~K+WK+2]C(T)8THO
fr) 72 72 r

2 2
+ S Hy— Z0,H.
T T

10Special thanks to my fellow master student Tom van der Steen who pointed out how to derive the algebraic identity
and how to decouple the system from Egs. (123) onwards [42].

22



2 METRIC PERTURBATIONS OF THE SCHWARZSCHILD SPACETIME

The first three equations follow from evaluating SR = 0, SRS = 0 and SRS = 0 respec-
tively, the fourth and fifth equations follows from 6R(even) 0 and 6R£’2’en) = 0, and the last equation
follows from the first part of 5R(even) =0.

The odd-parity sector in coordinates consists of three coupled equations, given by Egs. (87), while
the even-parity sector consists of seven (Egs. (108) and the trace condition). This means there
are ten coupled perturbation equations in total, but only six gauge invariant variables. The total
system is however not overdetermined; the Bianchi identities provide four additional constraints (three
even-parity and one odd-parity) on the perturbation equations, reducing the number of independent
equations to six. The Bianchi identities will not be utilized in this thesis. For reference, they are
provided in [9].

Egs. (108) reveals that the even-parity sector comprises three first-order PDEs and three second-order
PDEs in three unknowns. As noted by Regge and Wheeler [16], the first-order equations alone do
not provide sufficient information to solve the system. The non-trivial information contained in the
second-order equations can be encapsulated in an “algebraic relation” !, which is a third-order equation
involving only time derivatives. With this algebraic relation, any of the second-order equations can
be derived from the first-order ones. The algebraic relation plays a crucial role in reformulating the
system into the Zerilli equation. Following the method introduced by Zerilli [43], the objective is to
eliminate all r-derivatives from the second-order equations using the first-order ones, such that we
obtain a single PDE that involves only time derivatives.

The first step in obtaining the algebraic relation is to observe the similarity between the first and third
equations of (108); adding them gives

1 9 2 Le+1) 2
*WatK — f(r)o; K — ;f(r)&,K + 2 Hy + ;@Hl =0. (109)
Subtracting from this the last equation of (108) eliminates the term —92K
2 2(r— M) (€+2)(¢—-1)
- —0; K+ ——F0, K - ——K
T E
2 {4+2)(0—-1 4
BN G Gt § A Y (110)
T T r
We take a time derivative of this equation to obtain
2 3 2(r— M) (+2)(—-1)
7 Oy K + 2 0:0, K ] O K

(£+2)(¢—1)
r2

- %f(r)ﬁté’rHo + O, Ho + %ale =0. (111)

Now note that the second equation in (108) can be written as

LL+1)
8,0, K = 2f( ) =3y k4 8tH0 + =g, (112)
which we substitute in Eq. (111) yielding
2(r — M)(r — 3M) 2(r— M) (L+2)(—-1)
— 3 — e —— A ——
f(r) 8t K 7’4f(7“) 6tK + 3 8tH0 + 2 8tH0
— %&K — %f( )0:0-Ho + 82H1 + Mg(g: 1)H1 =0. (113)

1 Regge and Wheeler worked in the Fourier domain, assuming a time dependence of the form e~ for the variables
Hp, Hi and K which effectively replaces the time derivatives with prefactors of —iwt. This gives the resulting equations
an algebraic appearance.
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Taking a time derivative of the fourth equation in (108) gives

2M 1
K — 0,0, H, H, 7Hy = 0. 114
00, 010, Hy — 2 )5t o+ f(r)at 1=0 (114)
Substituting Eq. (112) into Eq. (114) gives
r—3M r— 1 L0+1)
Hy=————0K H H, + ~——H,. 11
20, = 5y K + gy e+ gt S )

Finally, inserting Eq. (115) into Eq. (113) yields the desired algebraic relation:

2 (4+2)(f—1) 2M(r —3M)
L R e K
_F“ﬁy_n+mﬂ@m+zﬁh W;UMmzo (116)

We now have a set of four equations — comprising the first-order equations from (108) and the algebraic
identity (116) — that contain all the information of the system. For clarity, we reiterate them:

r— 0L+1)
0 = — f( ) atK Bta K+ atH() + 2T2 H17
0= atK + atHO - f(T)arHl %Hlu

2M 1
O:aTK—arHo—TT%HO+m6tH1, (117)

2 (L+2)(¢—1)  2M(r —3M)
0= 7oK { "2 iy |
{+2)(0—1 6M 0+ 1
{<+g>+ }@mﬁym <;>Mm.

It can be shown that third equation in (117) is consistent with the others, so that all information is
stored in the first, second and fourth equations'? [18]. It remains to show that Eqs. (117) can be
decoupled and written as the Zerilli equation.

We solve the algebraic identity for 0, H( and substitute it into the first and second equations of (117).
This results in a system of two coupled equations:
80, K = ao(r)0; K + a1 (r)0:K + Bo(r)0; Hy + Br(r)Ha,

: A (118)
OrHy = 30(r)0; K + 71 ()0 K + 60(1)0; Hy + 01(r) Hy,

127t can be shown that Eqs. (117) are consistent with the results of Zerilli [18] if one assumes the following time
dependence for the modes:

Ho(t,r) = Ho(r)e™ ™,
Hy(t,r) = Hy(r)e” ",
K(t,r) = K(r)e ™t
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where the Greek-lettered functions are explicitly given by
for) ((+2)(0—1)  6M\]™"
ap(r) = [ 9 , e .
r—3M  [(¢+2)((-1)  6M Te+2)(0-1) L 2M(r—3M)
PFr) " Ok
GM} -

folr) = =2 [+ 2e— 1 + 2

calr) =~ r =

M (C+2)(t—1) 6M] " (L+1)
Bi(r) = ——zL(L+1) |:7,,2 tos| T35z
—1 (119)
(r) = 2 (€+2)(€—1)+%
o= e e =N
! (C+2)(0=1)  6M]7'[(L+2)(¢—1)  2M(r—3M)
=56 <1 [ e P )
2 [e+e-1  6M)T!
i) =~ |5
1 [aeen  ow
51(T)__f(r) { o r2}
We introduce the new variable P := 9;K and rewrite Egs. (118) as
0, P = [ozo(r)af + oz1(r)} P+ [/30(7«)63 + B (T)] H, (120)
orHy = [’Y()(T)3t2 + 71(7")] P+ [50(7")at2 + 51(7")] H;.
Next, we define the transformation
P =p(r)P + q(r)H,
p()P -+ a(r) o
Hy =v(r)P +w(r)Hy,
imposing that
P - dfly, &P * 21 £ dr _
dr = 1, W = W = I:V('f' )+8t} P, dr = f(r) (122)
Here, 7* is the usual tortoise coordinate. The r-derivative of Eqgs. (121) is
dp(r) 4 5 da(r) 5 ;
0P = I P+ p(r)o.P+ o Hy + q(r)0,.Hy
_ () 5, p(r) i+ dq(r) Joo q(r) V() + 67 P,
dr f(r) dr f(r) (123)
0, H; = dzgf") P +o(r)d, P+ Ch;(f) Hy + w(r)d, Hy

Equating these two expressions to (120) and collect all terms that multiply 2P, P and H; on the left-
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and right-hand-side yields a system of eight equations:

ao(r)p(r) + Bo(r)v(r) =

(124)

Yo(r)a(r) + do(r)w(r) =0,
dw(r) 1

dr + W’U(T).

This system can be solved for the functions p(r), q(r), v(r), w(r) and V(r*). The results are

M(r)g(r) +81(r)w(r) =

AN F D)2+ 3M (A +2M)
p(r) = r2(\r + 3M) ’ (125)
q(r) =1, (126)
o(r) = Ar? — 3AMr — 3M?
 rf(r)Or +3M)
w0 =5y e

V() =2f(r)

(127)

A2\ A+ 1)73 + 322 M2 + 9M?(\r + M)
r3(Ar + 3M)? ’

(129)

where we defined
(L+2)(£-1)
2

By virtue of transformation (122), the variable P satisfies the Zerilli equation:

A= . (130)

d>P . .

ek [(V(r) +87] P. (131)
An expression for P is found by reversing Eqs. (121); we isolate H 1 from the second equation and P
from the first, insert the expression for H; into the expression for P and obtain

-2 e~ 20
- ﬁ [atK - fgf)Hl} . (133)

Clearly, this implies that in terms of P, Eq. (131) is still a third-order differential equation in ¢. We
prefer it in the form of a second-order equation. To this extent, we first substitute for H; from the
first equation in (117), which gives

7,2

Ar+3M

2r

P= 0(+1

{atK - ) <T ;;’M 0K + ()0, — L) 6tHo)] . (134)

r
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Defining the Zerilli-Moncrief (ZM) function via
P = 8,0,y (135)
implies that also Wy satisfies the Zerilli equation,

dQ\I/ZM
dr+?

= [Vam(r*) + 87] 21, (136)

and (134) shows that Uz is in this case given by

B r2 2r r—3M flr)
Vo = [K ) ( 2 KoK = rHoﬂ (137)
— " (A + 3M)K — 12 f(r)0, K + rf(r) Hs] (138)

A+ 1)(Ar+3M)
(note that Hy = Hj). The corresponding potential is

NN+ D)3 +3X2Mr2 + 9M2(\r + M)
r3(Ar +3M)?

Vo (%) 1= V() = 2 (r) . (139)

Transforming back from r* to r, we see that we obtain the form of the Zerilli equation we were looking
for:
(0= Vzm) Yzm = 0, (140)

with
Van(r) == ——Vam (™). (141)

2.8.2 Decoupling covariantly

We have seen that the even-parity system can be reduced to a single wave equation through a series of
manipulations of the linearized vacuum Einstein equations in coordinates. We will show in this section
that the same results are obtained when rewriting the system in its covariant form and decoupling it
by introducing a specially tailored function, namely the covariant ZM function,

- ALH [K + ﬂ : (142)
where

vi=1r"fo — 1D, K, (143)

Alr) =X+ g (144)

In order to follow the calculations in Martel’s work [9], it is more convenient to use the perturbed

Einstein tensors rather than the Ricci tensors!'®. Explicit expressions for the Einstein tensors are

provided in Appendix D. The vacuum Einstein equations are obtained by equating each component of

13 Although in vacuum it suffices to compute only the perturbed Ricci tensors for the vacuum Einstein equations,
using the Einstein tensors offers the additional advantage of generality, as it allows for the inclusion of a source term.
However, this is not our primary motivation; given that the covariant calculations involve many tedious and non-trivial
manipulations, we aim to stay as close as possible to Martel’s methodology, which necessitates working with the linearized
Einstein tensors.
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0G . to zero and splitting off the spherical harmonics:

1 1 1
0= Qab = 90_@(1, 5) - §gab-@c@df0d - §@a-@bfcc - 5 (Dfab - gabljfcc)

T.C
r

) | , o0+1
+ T (@(b )~ gab%f°d) (Zefas = 92 1) + %f“b

1 c 1 c lf+1 c
- ﬁgabr 71dfcd - ;gab(gcrd)f ¢ (27"2 )gabfc - @agbK
2 3 (4+2)(f—-1
+ gapLUK — 7T(a9b)K + 7gab7‘c-@cK - #gab[(a (145)
r r 2r
0=Qu = ft = Ty + "1} — TuK, (146)
2 @ 0+1 2
0= =0f - 29 - g+ ot~ O e ek ok,
0=0f = fa. (148)

We retain the components of @,,,,, which in [9] indicate source terms, as labels on the equations (even
though they vanish in our vacuum spacetime). Since from Qap = 0 two equations follow, they are
labelled Qb and Q#. We also renamed Q.4 to @, as there is no capital index on the right-hand-side
of Eq. (146).

Note that upon inserting the trace condition, Eq. (148), into Eq. (146) gives
Dol = Do K. (149)

Substituting this and the trace condition into Eq. (147) shows that the latter is consistent with the
other equations and therefore does not contain any additional information. The only extra information
originating from Qap = 0 is therefore the trace condition, Eq. (148).

(145) can be slightly simplified by making use of Eq. (30) to rewrite the term

1 M
_;gab(gcrd)fai = _ﬁgabfcc- (150)

Using this simplification and substituting the trace condition into Eqs. (145)-(147) results in the
system

1 1 2
0= Qab = @cg(bf(f) - igab-@d@c]wd - imfab + ;Tc (@(bfa)c — gab@dff)

re A+1 1,
- 7@cfab + TTfab - ﬁgabr rd.fcd - 9a@bf( - gabDK

2 3. A
- ;r(agb)K + ;T gabch - ﬁgabK, (151)
0=Qu=%fs — 2uK, (152)
2 2
0=Q"=-2.%f" - ;ra%f“” +0OK + 2r'7.K. (153)

By performing clever manipulations, Egs. (151)-(153) can be transformed into a set of three differential
equations involving only K and the scalar field v. This system can then be decoupled by introducing
the ZM function.

We start by taking the trace of Eq. (151). Making use of Eq. (152), we obtain

2\ 2
0=Q¢:=9"Qu=0K - 5K — v, (154)
r r
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which is the first equation of our new system. The second and third equations we seek are found by
forming clever combinations of Eq. (151). Martel does not provide an explanation for the choice of
these combinations, but we assume he was granted divine insight. We start by forming the combination

F(r)Q% = r*r*Qap = 0. (155)

For the first term we simply substitute Eq. (154). The second term can be simplified right away by
using a clever trick. We can linearize the Ricci tensor of the unperturbed background (M?) as

5%ab =0 (f.@lb)

— @ + gé
- 2 Yab 2 Jab
A X

=0+ S, 156
2gb+2'7b (156)

where we used Eq. (23) in the first line and §g.p := vqp in the third. Inserting expressions (49) for
the linearized Ricci tensor and (50) for the Ricci scalar in (156), expanding in spherical harmonics and
using the trace condition yields

1 1 . 74 2M
DeDwfa) — §Dfab - §9ab@c@df°d = gfab = Tnjfalr (157)

We use this expression to replace the first three terms in Eq. (145). The result is substituted in (155)
and after tedious rewriting we obtain

rord A+2

0=f(rQ% —rr"Qup = ——— (Do fup — 7P D K) — Trarb fo

+ %f(r)r“.@aK - %f(r)[( (158)
Further manipulation of this equation requires us to rewrite
111D fap, = 1°De (17" fap) — 271 (Der®) fab
=r’D.(v+rr*9,K) — 271—]\2/[(1) + 711D K)

2M M
=1r"Pev — —5-v + rrr? 9, 9 K + (1 - 3> r* 9, K, (159)
r r

where we used relation (30) and the definition of v to go from the first to the second line. Substituting
Eq. (159) in Eq. (158) shows we have arrived at an equation only in terms of K and v,

1 1 2M A A
0= f(T)QZ - raerab = - ;Tagav - 7'72 </\ +2— 7”) v — ?Ta@aK — ﬁf(r)K (160)

This is the second equation of our new system.

Deriving the third equation requires most effort. It is obtained from the combination
g a,b b a _
T Qup + 17" ZQ45 = 0. (161)

For the first term we use Eq. (151), while for the second term we use Eq. (154). A tedious algebraic
exercise shows us that

2 2 1 4
;TaTanb + Tb-@bQZ =0= ;rarb@c@afbc - f(Tr) -@a-@bfab - ;Tarbljfab - T*Qf(r)ra-@bf(lz)

+ %(A + 2f(r))rr? fop + %f(r)DK + 19, (OK)

2 (/\ - Z‘f) r DK + i—;\f(r)K. (162)

r2
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Eq. (162) can be further simplified by rewriting the first, third and seventh terms. For this we need
the following results:

e The first term is rewritten by commuting the covariant derivatives and using Eq. (21) and Eq.
(152):
2
rarb@C@aflf = ;Ta’rb (@a@Cfbc +‘%cabdfdc + '@cacdflfl)
2 SM
= 21 D DK + 7 fa, (163)
r r

e The third term is rewritten using
TaTbDfab = ra’rbng@d@cfab

:gcd@d( a b@ fab) —ng(@dra) b@ fab _ cd a(gdrb)@ fab

= 9°“DaD. (11" fup) — Da ((2)° fap) — Da (r*(297°) fab)
— (27’ D fu — T (D°T") D fat
=00 fap) — 2 [(2°7)1° + (2°0°)r) fun] — 2(D°r)r° D fup
= 0(r? fup) — 22 27N fup, — 2020 (Der®) fap — U D) Do fas
=0O(r%r fab) + %Ta’r’bfab — Zl’r‘iMT’a.@bfb

=+ %v +rO(r*2,K) + 2 9, D K + %T“@,IK, (164)

r r

where we used relation (30) in going from the third to the fourth line. In the last step we inserted
the definition of v and made use of the fact that

O(rr*2.K) = 2°Dy(rr* 2,K)
=1 DDy (r* Do K) + r° Dy(r* D, K) + PP (ryr® D, K)
=r00r*2,K) + rb(@br“)ﬁaK +2r* 9, 9, K + (Qbrb)r‘l@aK + rb(ﬁbr“)@aK
= r0(r*Z,K) + 2rr* 9, D K + t—ﬂjr“@aK. (165)

e Finally, the seventh term can be expressed as
P, (OK) = ¢"r* 9, 2. D K

= "1 (2. DK + R, V4K )

2M
=9"D.Dy (1" Do K) — ¢ D. (D7) Do K) — ¢*(Der™) Du Do K — 3T %K

=0(r*2,K) — 2(2°r") 2,2, K

2M
=0(r"%.K) - ~5 OK, (166)

where we again used relation (30) in the last step.

Substituting these results into (162) and using the definition of v, we obtain the third equation of our
new system:

2 M 1 aM
0="=-r Tanb-‘rTb.@an——*D’U-l— [A+2(1—>]v+<1—)DK
r r r r
6M 21
+ 77.3 r .@aK + ﬁf(T)K (167)
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The perturbation equations, (145)-(148), have now been reformulated as a system of three equations
in terms of the two variables K and v:

2 2
0=0K- 5K - v,
r T

1 1 2M A A
0=—-1"%v— — (A—i— 2— ) v— =19, K — < f(r)K, (168)
r r r r r
1 M 1 4M M
O:—va—kz A+2(1——)|v+—-(1—— DK+—6 ra@aK—k%f(r)K.
T r3 T T T r3 r3

We eliminate'® v in favour of Wy

6M __ 2A(N+1)

0=0K + —K - ="y,
r r
A 1 1 M M? A 1
O:_Mra@a\PZM_ At /\()\+1)+3—)\+ 6 \IJZM‘FMK,
72 73 r 72 72
AN+1 200+ 1 6M
0= —7( :_ )D\IJZM + 7( :— ) ()\ + ) Ta@a\I/ZM (169)
r r r

20\ +1 M M?
+ % {)\(/\4—1) + (4>\—3)+182] Uz
r r r

1 M 2 3M 3M?
+<)\+1—>DK—3</\()\+1)+(/\+1)+ 5 )K.
r r r r r
These three equations can, miraculously, be rewritten into a single wave equation by isolating 1K from
the first equation and K from the second, and substituting both results into the third. The resulting
equation is the Zerilli equation,

(0= Vzm) ¥zm = 0, (170)
where o2 v
18
2
Vom(r) = 2A2 {QA (I+A)+ 2 <A+ . ﬂ . (171)

This potential exactly matches the one we derived in coordinates (but is written in a slightly different
form).

2.9 The Chandrasekhar/Darboux transformation

In Section 2.7 and 2.8, we have demonstrated a remarkable feature of the Schwarzschild spacetime: the
complex systems of perturbation equations can be decoupled using a single function for each parity,
namely Urw and ¥yzy;, and written as two independent wave equations. It now remains to show that
the RW equation and the Zerilli equation are related by a specific type of transformation.

This relationship is commonly referred to as the Chandrasekhar transformation, named after its dis-
coverer. In his work [19], Chandrasekhar however failed to realize that the transformation he derived is
actually a specific instance of the more general concept of a Darbouz transformation (DT). A DT is a
broader notion that is applied to many areas of physics, allowing one to relate the solutions of second-
order ordinary differential equations that are written in canonical form (that is, without first-order
derivatives). In the context of black hole perturbation theory, the very existence of a DT between the
odd- and even-parity master equations implies that, in such a spacetime, even and odd perturbations
are isospectral [23].

In the following subsection we show explicitly that the RW and Zerilli equations can be related by
a DT. Subsequently, in subsection 2.9.2, we demonstrate that the existence of a DT directly implies

14\We have the freedom to eliminate either v or K from the system, but we choose to remove v.
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isospectrality. This section follows the approach outlined in the work of Glampedakis et al. [23] and
Chandrasekhar and Detweiler [22].

2.9.1 The relation between the RW and Zerilli equations

DTs in general relate two differential equations of the form

y' () + [ = Vi(@)y ()

=9 (172)
Y (z) + [a — Va(2)]Y (z) = 0,

with eigenvalue «, potentials V;(z) and Va(z), and the prime indicating differentiation with respect to
the variable . The DT between these equations is given by the linear relation

Y =y +a(z)y, (173)

connecting their solutions. Differentiating Eq. (173) twice with respect to x and substituting Egs.
(172) and (173) for ¢’ and y” yields

Y'=(a—2d —V)Y + (> —d +a—-1)'y=0. (174)

Equating this to the second differential equation in (172) shows that we obtain two constraints,
Vo = 2d' + V7, (175)
(a*>—ad +a—-V)=0—=a*>~d +a-V,=C, (176)

with C' a constant. Combining these constraints yields two equations that completely determine the
transformation:

o = f%(vl ). (178)

In the context of this thesis, the analogues of (172) are the Schrodinger-like form of the RW and Zerilli
equations, which we will reiterate:

d2\IIRW ) %

T+ W = Ve ()] Wrw =0, (179)
U

dr*Z2M + [0 = Vo ()] Wzar = 0. (180)

We identify the eigenvalue o = w?, Vi = Vi and Vo = V.. Moreover, the variable = 7*, such that
0r = f(r)0r. It is then straightforward to verify from Eq. (177) that

()0 (20w = Vi — Vom) AN+ 1) 3M f(r)
a(r) = (Ve — Vi) T T3M Qw4 3M) (181)

The second constraint, Eq. (178), implies that the RW and Zerilli potentials are related by
Vo = Vi + 24/, (182)

which is readily verified by inserting expressions (98) and (139) for the potentials. A proof that this
DT agrees with Chandrasekhar’s transformation is given in [23].
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2.9.2 Isospectrality of the Darboux transformation

In this section we will show that the existence of a DT between the potentials of the RW and Zerilli
equations implies that their QNM frequencies are isospectral. We make use of the fact that DTs in
general have the inherent property of preserving the transmission and reflection amplitudes of the
potentials they relate.

Transmission amplitudes describe how an incoming plane wave propagates through the potential,
while reflection amplitudes determine how the wave is scattered back. Together, these quantities fully
characterize the asymptotic properties of the wave. QNMs are defined precisely by this asymptotic
behaviour!®; they correspond to the values of w for which the wave is purely outgoing at r* = +o0
and purely ingoing at r* = —oo. If the transmission and reflection coefficients of two potentials are
equal, their QNM spectra must be identical, which means that they are isospectral. We will therefore
explicitly demonstrate the isospectrality of Darboux-related potentials by proving the equality of their
transmission and reflection coefficients.

V(r")
- /\\\ /’/ SN ’//'/\ N
\\\_ % \\ S !

I trans

-— L PN - T

transr'mtte:l reflected I ref

wr iwr™
~ e —iwr
~ €

*

T

Figure 2: A plane wave impinging on the RW or Zerilli potential is partially reflected and partially
transmitted. Adapted from: [44].

Characteristics that are key to the argument are non-singular, barrier-like and short-ranged'® nature
of the RW and Zerilli potentials. The latter implies that the asymptotic behaviour of the solutions
Urw and Wy is in the form of plane waves,

U~ et (1 o +00), (183)

which follows from Eq. (97) and Eq. (136) when their respective potentials vanish. Let Urw describe
a wave coming from 7* = +o00 and hitting the potential Vi (r*). The wave will be partially reflected
and partially transmitted, which is described by the solution

Waw (+00) =Ain(w)e ™" + Agu(w)e™",

- (184)
\I’Rw(—OO) :Bin(W)e_lwr .
The accompanying reflection and transmission coefficients are given by
|*Aout‘2 |Bin|2
Lot = , I = . 185
ref |Ain‘2 trans |Ain‘2 ( )

15 At this point it is particularly convenient to work with the tortoise coordinate, as r* — r for r — 400 and r* — —co
for r — 2M, the latter corresponding to the event horizon of the black hole. Hence, in terms of the tortoise coordinate,
there is no coordinate singularity at the event horizon [44].

16With short-ranged, we mean they must decay faster than (r*)’1

as r* — too.
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Since the QNM frequencies are the values of w for which the wave is purely outgoing at r* = 400 and
purely ingoing at r* = —oo, we must have

Ain(w) =0, (186)

which means that I_} = I} =0 for QNMs.

ref trans

Inserting Egs. (184) into the linear Darboux relation (173) provides the form of Uz (+00):

Uz (+00) =0p+ Wrw (+00) + a(+00) Wrw (+00)
=[—iw + a(+00)] Ain (W)™ ™" + [iw + a(+00)] Aout (w)e™™
=Ame ™" 4 Agyee™”

Uzm(—00) =0p+ Wrw (—00) + a(—00) Wrw (—00)
=[—iw + a(—00)]Bin (w)e™ ™"

=Bin (w)e ™.

(187)

A Taylor expansion of (181) around r* — +oo gives

=

a(:l:oo)aoJrO( 1), (IO:M, (188)

such that the reflection and transmission coefficients are
2 . 2
[Aout] liw + ao|
= lrefs = Iyef
|Ain|2 re |zw — a0|2 ref,

I o |Bin|2 - |zw — CL()‘2
trans — |Ain|2 - transﬁi

Z-1ref =
(189)

3 = Itrans~
w — ag|

The even QNMs satisfy the similar condition
Am(w) =0 — T} =15 =0. (190)

The fact that Zirans = ltrans and Zier = Iof for the Darboux-related potentials V,,, and Vi, and
the fact that they satisfy the same QNM condition proves that the QNM spectra of both potentials
coincide. This proves that the RW and Zerilli equations are isospectral.
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3 Metric Perturbations of the Black String Spacetime

In Section 2, we covered the formalism of metric perturbations for the Schwarzschild black hole,
and established the isospectrality of its QNM frequencies. We now apply this approach to the five-
dimensional spacetime of a black string, aiming to investigate whether a similar isospectral relationship
holds in this higher-dimensional setting.

When considering black holes in five dimensions, a natural starting point is the Schwarzschild space-
time, which can be extended by an additional dimension in (at least) two distinct ways. The first
option is to introduce an extra angular dimension, resulting in a hyper-spherically symmetric black
hole. Alternatively, we can extend the spacetime uniformly along a fourth spatial dimension, forming
a black string [45]. If we would extend our spacetime even further in this manner, black strings can be
viewed as lower-dimensional cases of the more general black p-brane, a class of black objects predicted
by ST. A p-brane is effectively the p-dimensional counterpart of a black hole. [46]. A black string
therefore represents a p = 5 -dimensional generalization of a black hole.

The structure of this section is as follows. First, we briefly examine a key property of the black string,
namely its instability. In Section 3.2, we discuss the form of the metric describing a black string.
Following this, we apply the perturbation formalism to the black string spacetime, aiming to derive
the five-dimensional Regge-Wheeler and Zerilli equations in Sections 3.3 - 3.8. Section 3.9 covers a
short discussion on the number of variables in our results.

3.1 Instability

Schwarzschild black holes have been demonstrated to be stable under linear metric perturbations by
Regge and Wheeler [16]. In a study of higher-dimensional black holes, Gregory and Laflamme [47]
established that black strings and p-branes are in fact unstable when subjected to such perturbations,
an effect now referred to as the Gregory-Laflamme instability. This instability is physical, which
suggests that the event horizon may undergo fragmentation into several higher-dimensional analogues
of spherical black holes.

Since linear perturbation theory cannot predict the final state of black strings, more recent studies
have sought to determine it numerically using nonlinear methods (see Ref. [48-50]). These studies
have revealed that sufficiently thin black strings, when perturbed, evolve into a sequence of three-
dimensional spherical black holes of varying sizes, connected by black string segments (of comparable
radius). Each of these local string segments is itself unstable, driving a self-similar cascade down to
arbitrarily small scales'”. However, a definitive consensus on whether this constitutes the true final
state of the black string has yet to be reached.

The Gregory-Laflamme instability is relevant for our discussion of perturbations of a black string
because it imposes a limiting condition on its length. In the next section, we will discuss the concrete
implications of this limitation.

3.2 Metric

The metric of a black string is obtained by introducing an additional uniform spatial dimension to the
Schwarzschild metric, resulting in a spacetime with cylindrical symmetry. The uniformity of this extra
dimension implies that it is independent of any of the coordinates. Consequently, the line element for
this spacetime is given by

1
f(r)

17Notably, this bifurcation could lead to the formation of a naked singularity, potentially violating the cosmic censorship
hypothesis. For a discussion, see Ref. [49, 51, 52].

ds? = —f(r)dt> + ——dr? + r2d03 + dz>. (191)
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A visualization of the event horizon of this spacetime is given in Figure 3. This metric evidently
exhibits translational symmetry along the z-direction, suggesting that the black string can, in principle,
extend indefinitely. There are two simple heuristic arguments why this is physically impossible. First,
an infinitely long string would possess an infinite total mass, which is clearly unphysical. Second,
the string’s length is fundamentally limited by the Gregory-Laflamme instability. As discussed in
Section 3.1, this instability causes the string to fragment when its length exceeds a critical value (L..).
Fragmentation results from the growing modes of the instability if this threshold is exceeded [48].
To circumvent these issues, we assume the black string is compact, meaning it has a finite length L,
satisfying L. > L > R, where Ry is string’s radius. This assumption not only ensures a finite total
mass but also aligns the black string with the string-theoretical (Kaluza-Klein) framework.

Figure 3: A visualization of the event horizon of a black string (left), with the effect of the instability
caused by a perturbation (right). Adapted from [1].

3.3 Perturbing the black string

We will now perturb the metric of the black string, similarly to how we perturbed the Schwarzschild
metric in Section 3. As before, we separate the full manifold into two submanifolds. We naturally
choose!® to incorporate the z-dimension into M?3. The line element then takes the form

b
f(r)

with the lowercase Latin indices indicating

ds? = —f(r)dt* + dr? + dz? + r2(d6? + sin® 0d¢?) := gapdz®da® + r’Qapdztda®. (192)
x® = (t,r, z), a=0,1,2, (193)
while the capital Latin indices still take on either 6 or ¢:

= (6, ¢), A=34. (194)

18In principle we could integrate the extra dimension into S3, but this would introduce unnecessary complexity. We
prefer to maintain the advantage that the angular part of the perturbations naturally separates, something we used
to our advantage in the four-dimensional case. It is important to note that absorbing the uniform z-dimension into
the angular coordinates differs from introducing a new angular dimension, as the latter would lead to hyperspherical
symmetry rather than cylindrical symmetry.
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Curvature quantities will inevitably change upon adding the extra dimension. We expect however
that adding a uniform dimension does not alter the constant-curvature nature of the submanifold!?,
allowing us to use Eq. (18) for d = 3,

2M

74 = —
abed 373

(gacgbd - gadgbc)a (195)

where we used the fact that the Ricci scalar of M? is equal to that of M?2. It is not surprising that the
Riemann tensor differs from its two-dimensional counterpart, as different spacetimes inherently come
with distinct background curvatures.

Since the extra dimension does not depend on any of the coordinates, derivatives of the metric remain
unchanged, and the Christoffel symbols are identical to those in the four-dimensional case (after all,
Christoffel symbols with one or more z-indices simply vanish). Consequently, the linearized connection
(Eq. (37)), along with the Ricci tensor (Eq. (49)) and Einstein tensor (Eq. (51)) , are also unaffected.
We verify this by evaluating them in five dimensions using the script 5D_PERT_COORDINATES.NB. In
the next section, we will observe that differences with perturbations of the Schwarzschild spacetime
emerge when we apply the spherical harmonics decomposition.

3.4 Decomposition into spherical harmonics

The perturbed metric components are again decomposed in scalar, vector and tensor harmonics of
even and odd parity as

Yab = Zfab (t,r,2)Y™,
VoA = Z {jzm t,r, 2)YA™ 4 e (t,r, 2) XY (196)

5= Z {TQKem(t, T, z)QABYzm + TQGem(t, T, z)Yfi’E + hgﬂﬁ”(t7 T, Z)Xf‘”é
lm

The addition of an extra coordinate implies that the mode functions take the form

frHE™(t,r,z)  H{™(t,r,2)  H{™(t,r,2)

tm — H{™(t,r, 2) ﬁHﬁm(t,r, z) H{™(t,r,2) |, (197)
HE™(t, 7, 2) H™(t,r, 2) HEi™(t,r, 2)

e

ng _ ]{m(t, T, Z) , (198)
g™ (t,r, 2)
hE™(t, 7, 2)

hlm = h"m(t rz)|. (199)
Em(t,r, z)

Note that the mode h{™ is now part of h‘™, while h{™ is the new name for the odd-parity mode
belonging to the tensor harmonic X4m . Tt is evident that there are 11 even-parity modes (H{™, H{™,
HY™ HE™ H™, HE™ i gim gEm 0 KO and GY™) and four odd-parity modes (h§™, h{™, h&™ and
h(m)

19The assumption that M3 has constant curvature turns out to be incorrect. See the addendum at the end of this
thesis
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3.5 Gauge transformations

In total there are 15 variables (H§™, H{™, Hi™, H{™, H{™, HE™ jém jim gim Kfm Gém pim him,
hE™ and h§™) in the 11 even-parity and four odd-parity vacuum Einstein equations. We can again
eliminate some of them by applying appropriate gauge transformations. Dividing the gauge vector

=, = (Eq,Z4) into vectors with even and odd parity,

= Lm0

Za = Zgamy ",
m

=0 = S+ e,

m

(200)

shows that there are four even-parity functions, £§™, &{™, ¢£™ and ¢5™, and one odd-parity function,
&{™. By exploiting the gauge freedom, we can therefore eliminate four?® even-parity mode components
(as opposed to three in the Schwarschild case) and one odd-parity mode component of the metric
perturbations.

3.5.1 Odd-parity gauge transformations

The odd-parity gauge transformations are generated by ng)dd) = (0, E(de)). Analogously to the four-

dimensional case, we find that the mode functions transform as
P s BT = B — B Dl (201)
RE™ — Ry = pim — 2gfm, (202)
We now find three gauge-invariant quantities:
B = T SO L b (203)

Eq. (202) shows that we can set h§™ = 0 by imposing that £™ = 1h§™. This is the five-dimensional
analogue of the RW gauge. Imposing hgm = 0 implies

h&™ = hEm, (204)
R{m™ = ptm, (205)
RS™ = nim. (206)

3.5.2 Even-parity gauge transformations

The even-parity gauge transformations are generated by E,(f ven) _ (Eaeven),Effven)), such that the
mode functions transform as

atilwyn fél;)m _ fg’b _ 2@(1155)7”7 (207)
2

jgm ];ém _ Jﬁm . gﬁm _ @aggm + ,Ta§§"L7 (208)
T
Ll+1 2

sz K/Zm _ Kém + ( 7:'2_ )é-gm _ ;Ta ﬁm’ (209)

2
GZ’m G/Zm _ GZ’m _ T72 gm (210)

20The fact that we can fix an extra even-parity quantity compared to four dimensions is simply due to the fact that
jﬁm is extended with one variable, jgm.
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The gauge-invariant quantities are

~ . T‘2

ar’ = fai' = Pa (Jfﬁ” - 2%sz) : (211)
. 1 2 §
Kém _ Kém + é(ﬂ;— )Gém _ ;Ta (jﬁm _ ;@aG€m> ) (212)

We can set j&™ = 0 and G*™ = 0 by choosing 5" = éGem and ¢fm = jim é@aGem in the RW
gauge. Imposing 5™ = 0 and G*™ = 0 implies that

fav' = fab's (213)
K = K™, (214)

This means that also in five dimensions, the perturbed quantities in the RW gauge are equal to their
gauge-invariant counterparts. From now one we will pick up the practice of dropping the summation
over ¢ and m.

3.6 Tools for checking calculations

The introduction of the extra dimension adds several variables and equations, making it considerably
more difficult to decouple the perturbation equations. As a result, the calculations in the rest of this
thesis will be lengthy and tedious. It is crucial to carefully track the information contained within the
system of perturbation equations. We have three “tools” that aid us in assessing the correctness of
our calculations:

e Schwarzschild limit: By setting all quantities related to the fifth dimension to zero (i.e. the
new variables and z-derivatives), we can verify that we recover the four-dimensional results. To
facilitate a clear comparison, it is helpful to work in terms of the dimension d = 2, 3, where the
Schwarschild limit corresponds to d = 2, and the black string case corresponds to d = 3.

e Counting variables and equations: After manipulating the equations, we can count the total
number of variables and the corresponding equations needed to describe them. This allows us to
track the information in the system, ensuring it is not underdetermined.

e Dimensional analysis: It is always possible to check whether the terms in our calculations
have the correct dimensions. For instance, the (linearized) Ricci tensor has dimensions [6R,,,] =
[R,,] = m™2, since it contains second derivatives of the metric tensor. Note that throughout
this thesis, we use natural units. To restore units, we must replace M — Gy M/c? and t — ct,
with Gy Newton’s constant and ¢ the speed of light.

While none of these tools do not provide proof that we have obtained the correct results, they do
minimize the risk of structural errors.
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3.7 Regge-Wheeler equation

In this section, we aim to derive the RW equation in five dimensions. We start from the odd parity
perturbation equations?' in Appendix D for d = 3. We must be careful that this time,

ho hO
1M M 1M
—*hb@ .@br——;ﬁ hl #—ﬁha:—;ﬁ 1 , (216)
0 ha

impeding us from using the same simplification for (5R$§1d)

following vacuum Einstein equations:

as in four dimensions. We obtain the

odd
SRS =0,
o 2
SR — 0= | —Ohe + 24 gbhﬁ;h - ra@bhb+ rb@ hy — —rar’hy
(217)
2 0(L+1
— S Da PPr + ( —g )ha:|XBv
r T

SRYIY = 0 = [2%he) X ap.

3.7.1 Decoupling in coordinates

Egs. (217) are evaluated in coordinates using the script 5D_PERT_COORDINATES.NB in terms of the
dimension d. The results are

SR — g — % :f(r) (_afho + (8 + ) O¢th > (6(57:2 1) + 27«7];/[ (3[ - 3)) ho

+ 0;0.ha — (’ﬁho} X4,

(odd) _o_L[_ 1 (5 2 -nle+2) 2M (2

1 2
+ mafhl + (ar - r) 0:ha — 5§h1]XA, (218)
ad) _og_ L[ 1 2(, M
SR, =0= 3| f(r)atazho + <f(r)8r + " (1 . 0 h1
L MY (D) Al
(odd) _ o 1
5RAB =0= —matho + 67- (f(’l“)hl) =+ azhg XaB.

21The odd-parity perturbations constitute the following symmetric matrix:

0 0 0 e no

0 0 Tré Treé
0  heXp
Ypv = |:hbXA aO :| = sym 0 'Y(z)@ ’quﬁ . (215)
0

It is evident that we cannot simplify our analysis by treating perturbations that are independent of 6 and ¢, a tactic
employed by Gregory [45]; there simply wouldn’t be any odd-parity perturbations left, making it rather difficult to prove
or disprove isospectrality.
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The correct Schwarzschild limit is obtained when we set d = 2 and hy and z-derivatives to zero. For
d = 3, we have

0= f(T’) <8fh0 + <8r + i) 8th1) + (K(ETZ 1) + % (2 — 3)> ho + 0;0,ho — 83}10,

r3 \d

0= —% (a,. - i) Orho + (W + i—ﬂf (3 - 1)) hy + %62}11

2
+ (ar — T) D.hy — 0%hy,

0= ——0,0.h0 + (f(r)ar + % (1 - Af)) d.h1 + (163 - 27,—]\24& - f(r)03> ha

(219)

f(r) f(r)
+ <W; DN %)hm
1

0= atho +8T (f(?")hl) +6Zh2

f(r)

One can check that only the second, third and fourth equations are independent. To decouple Egs.(219),
we first rewrite the last equation as

Otho = f(r)0 (f(r)hy) + f(r)0.he (220)
and substitute it into the second and third equations to eliminate any dependence on hg:
1 2(r —5M)
0= m@fhl — f(r)afhl + T&«hl - 83}11
(—1)(t+2) 56M?—22Mr 2M
— — 221
(% ire) )" 2

1
f(r)
We now introduce the RW function, given by Eq. (90) (it is readily verified from its covariant definition,

Eq. (99), that the RW function is identical in four and five dimensions). Moreover, we use that the
d’Alembertian operator of M? is given by

1
V=g
= <f(17~)8t2 + f(r)o? + i—ﬂfar + 83) Urw

= (0+92) Trw. (222)

0:—2f(r)8zh1—[— (e+1) 4M) .

2M
3f+f(r)83+738r+33]h2+< T 33

G\I’RW =

9a (V=990 ¥rw)

We can then write (221) as two coupled equations in terms of Wgw and hs:

A 2M Le+1) 20M
Ow —0,hgy — — Urw =0, 22
RW + 3 0zh ( 2 53 ) rw =0 (223)
A Ll+1) 4AM
Ohg — 20, Yrw — ( 2 + 3r3> hy = 0. (224)
Defining the new potentials Viy and V5, we can write this more compactly as
N 2M
(B - Va) Wrw + Z5-0:hy = 0, (225)
(ﬂ - Vz) ha — 20, Ury = 0, (226)
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where
Le+1) 20M
Vo = 2 33 (221)
l+1) 4M
= - 22
& r2 * 3r3 (228)

Interestingly, by applying the same approach as in four-dimensions, we end up with two coupled
equations instead of one. In Section 3.7.3, we investigate whether these equations can also be decoupled.
First however, we will briefly show that the same results are obtained using a covariant approach.

3.7.2 Decoupling covariantly

We start the covariant approach from the d-dimensional analogue of Eq. (100), i.e

0= lra (—Dha + 2rb@ahb> — zr YD DOr)hy — — [2 _a (1 + ;) — 0+ 1)} %he.  (229)
r T 72 T

The individual terms in this expression can be rewritten using the covariant form of the RW function,
Eq. (99). We first term becomes

1 1 1
;r“ljha =0 (rraha> - 7(91’ “Dyha — —1r"roha +3 ry(2°1%) hy
—r*(0Or)hg — f(Dr“)ha + frb%) (raha>
T

2M 4M
=D¥rw + *7" "DyVrw + —5-0:ha + —5 Yrw. (230)

The difference compared to the four-dimensional case arises from the fact that this time,

2 2M 2M 2M
7;(9177"&)917]7/& = 77"73 @aha +7ﬁ738zh2 = F

=0

9. ho. (231)
Substituting Eqs. (230) for the first term in Eq. (229) and Eq. (104) for the second term gives

N 2M f(ﬂ + 1) 4M 1
O%rw + TTazhz - |: ) el (2 — d)] Urw =0, (232)

which in the Schwarzschild limit indeed reduces to Eq. (91). For d = 3 it reduces to Eq. (223). As in
the four-dimensional case, we have now combined three of the vacuum Einstein equations: 5R§?4dd) =0,
6Rf_(jf Y =0 and 5Rffgd) = 0. A short calculation shows that 5Riofd) = 0 indeed gives the additional

equation in (224).
3.7.3 Decoupling even further

By explicitly rewriting the system as a set of coupled PDEs, we have shown that it can be reduced to
two coupled equations for Wgrw and hs, a result we confirmed with a brief covariant calculation. The
question remains whether it is possible to decouple them into two independent wave equations.

To this end, we recast Egs. (223) and (224) into the form

- (Ve =EHL0) L
0o — (282 V2 v =0, (233)

7= <‘I’]};W> . (234)
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In principle we could try to diagonalize the matrix

V *%f)z
(2({ v ) (235)

by solving an eigenvalue equation. This would lead to a differential equation that requires the deter-
mination of boundary conditions in order to find its solution. To avoid this, we decide to adopt a
z-dependence of the form e*** for Wy (or equivalently h;) and hg, which is a periodic function in the
z-direction with wavenumber?? k:

hi(t,r, 2) = e**hy (t,7), (236)
ho(t, 7, 2) = e**hy(t, 7). (237)
Such z-dependence is justified by translational symmetry in the z-direction, and is therefore only valid

under the assumption that the string has a finite length much shorter than the critical length (see
Section 3.2). With this assumption, the system can be written as

07 — A7 =0, (238)

with
«-—— 3
A= ( 2k KA Vh

Note the change of the dimensionality of the d’Alembertian operator! We can diagonalize the matrix
A by decomposing it as

2 _ 2ikM
R+ Ve ) . (239)

A=P'DP, (240)

where the matrix D is diagonal and has the eigenvalues of A as its diagonal elements, and the columns
of P consist of the eigenvectors of A. In the script 5D_PERT_COORDINATES.NB, we calculate the
eigenvalues and eigenvectors of A, resulting in

D= (Alé’”) A;ZT)) , (241)

i(2M++/M(AM —k273)  i(2M —+/ M (4M —k273)
P = kTS k)’l’?’ ) (242)
1 1
with eigenvalues
1 1 [16k2M
Ar2(r) = 5 (Vo + Vo) + k% &+ 2\/7“3 + (V2 —V2)?
Le+1) 8M 5 | 2
=3 " 35 Tk E g VMAM + k). (243)

A1(r) is attributed to the — sign and A2(r) to the + sign. Having diagonalized A, we insert Eq. (240)
into Eq. (238) and rewrite the result as

(O-P'DP)7=0

(PO-DP)5=0

(PO-PD)5=0
(O-D)v=0. (244)

22We are allowed to use the same wavenumber k in both h; and hs because we are working with linear perturbation
theory, where there is no interaction between the modes.
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In the first step, we multiplied from the left with P. Then, we commuted the matrices D and P.
The latter is allowed because their commutator is, fortunately, zero by direct computation (a highly
non-trivial result!). Eq. (244) implies that we can write the system as two independent wave equations,

(0= A (n)]¥rw(t,7) =0, (245)
[O— Xa(r)]ha(t,r) =0, (246)

with the functions A;(r) and Az(r) as potentials.

The fact that we end up with two independent wave equations in the variables Wgry (¢,7) and ha(t,7)
can be attributed to the presence of both radial perturbations and perturbations along the length of
the string, with the odd-parity sector of the latter being described by he. We will argue in Section 3.9
that the decoupling into two equations in this manner is indeed a plausible result.

3.8 Zerilli equation

In this section, we attempt to find the Zerilli equation in five dimensions. We start from the even-parity
vacuum Einstein equations given in Appendix D. For d = 3, these are

even 1 m m =
5Rt(1b ) =0= 5 [@b@mfa (fba - gbaf,,n) + -@a-@mfb — Dfab
2 m m m m 140 + 1
2 @+ 9oty - 9 ) - g+ g,
2
~ SMZK ~ 1 D) — 2%%1{}1/
1 1 (247)
5R((lel‘3’en) _ 3 [ Do [ — Do f1 + ;Taf:nn — @aK] Yz,
even a 1 m a a 1
53543 )= { o Do f*0 — irrb%fm + 101y fC + 1Dy OO — §D(r2K)
1 1 " 1.,
+ U+ DK + 0+ 1)fa]QABY — 512V,

3.8.1 Decoupling in coordinates

Eqgs. (247) are evaluated using the script 5D_PERT_COORDINATES.NB in the dimension d. This yields
a system of ten coupled PDEs with the correct Schwarzschild limit. The equations in terms of d are
not particularly illuminating to present. We show the result for d = 3:
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(even) _ 2 _ YT A (e _72 _T_M (l+1)
ORy, =0= f()8K+ 8K —f()E)HO —aH 8 OrHy + o2 H,
M 2M M
Qf() atHl +ata H1 r 8H2_7H2+matazH‘j_ﬁazH4,
(even) _ r—3M M 1 E(é + 1) 2M
SRy =0=— Qf()atK 00, K — 8t8TH0+227f()8tH0—783H1+ 52— 3 )
oonty + - Mo aaH M o aaH
+§tr 2+ f() o + 3— 20 3+ 50 4,

SR = 0= 00K — 50,0.Ho + @a@m LGP @agﬂg 10y m,
' T

0+1) M L
N ( e+y 7~3> H3 + @&m + f(r) 0:0r Hy + 50,0 Hs,

2r2
even M M 2M 2
SR =0 = —f(r)0? ﬁaTK 2 )8tHO+ aHO ?Ho—atarH1+2f( )6 i Ho
- M L6+1
+ I ey, 4 My, Lorm, ¢ ( * )ty + F(r)0,0. Hy + - a Ha,
2 r 2 2r
1 M 1 1 2r
(even) — 0 = —9,0.K + -0, K + ————0,Hy — —— 0,0, Hy + ~8,0, H. H.
6er 0 araz + Taz + 27’2f(7”) az 0 2f(7’) 8taz 1+ 2araz 2+ 20 2f( ) a 2
1 1 Le+1) M 1
- — 9,0,Hs + ———0?H. — | H fMH7
2f(r)8t8 3+2r2f(r)3t 4+< 22 + 3) 4+ =0,0,Hjs
1 2(r — M) f(r)
(even): — 2K - Ha — H—i H_72H 72
OR 0=0,K + 70 0:0.Hs — f(r)0,0,Hy 2 0.Hy 2 (r )8 5 + 0y H
r—M 1,4 L+1)  2M
+ Tang, — 58ZH5 — ( o2 + ’/'73 H57
2M
5R§i’en) =0= (9tK + 8tH() — f(r)(?THl -~ H1 — 6ZH3,
T
M 1 M
SR — 0 =9, K — H Hy — 0,Hy — ——Hy — . H
RrA 0=20 7“2f(7°) o+ f(?“)at 1—O0rHo 7“2f(7") 92— 0 4,
(even) 1 2M
5R =0= 5‘ K + f(?“) 8tH3 — f(T)8TH4 7H4 — 3 H5 (248)
5R(even) = 0 yields two conditions, namely
0= ia?Kff(r)agKia§K+ Ma K+ w[(
70 2
2 2 2 2
— *6,5H1 + *f(T‘)ang + szQ + *f(’l")azH4 (249)
r r r r
and the trace condition
fg:—H0+H2+H5:0—>H5:H0—H2. (250)

With this trace condition we can eliminate Hs from the resulting system.

We observe that the system consists of three first-order equations and seven second-order equations. In
principle, we should be able to derive an algebraic relation from the second-order equations following
the method from Section 2.8. However, this turns out to be practically unfeasible. Eliminating the
various (mixed) derivatives with the z-coordinate is extremely difficult and boils down to brute-force

45



3 METRIC PERTURBATIONS OF THE BLACK STRING SPACETIME

trial and error?3.

A possible method to simplify the problem is to assume an exponential dependence for the modes, for
example, in the variables t and z, effectively disposing of the corresponding partial derivatives. While
this simplifies the problem to some degree, it remains insufficient to obtain a single algebraic identity.
Even if such an identity were found in this case, this is just the starting point of the decoupling
process in coordinates! Clearly, a more systematic approach is required to decouple the even-parity
perturbation equations.

3.8.2 Decoupling covariantly

A more systematic approach to the decoupling problem is provided by Martel [9], which uses covariant
calculations. While this approach is more organized in principle, it does come with its own set of
challenges. As we will see, the method is highly detailed and specifically designed to work in four
dimensions. We must be very careful in identifying the additional terms that will appear in our five-
dimensional calculations. Furthermore, although the ZM function in (142) was successful in decoupling
the four-dimensional system, there is no guarantee that the same function will work in five dimensions.

As in Section 3.8.2, we make use of the Einstein tensors in the linearized vacuum Einstein equations.
They are given in terms of even-parity spherical harmonics in Appendix D, Egs. (317)-(319). A minor
difference with the four-dimensional case is that we cannot make use of Eq. (30) to simplify Q5. The
five-dimensional analogue of Eqs. (151)-(153) is therefore

1 1. 2 re
0=CQa =ZDwfa — §gab909dde - §Dfab + ;TC (20 fare — gavZafl) — 79cfab

A+1 1 c 1 c A
+ Tfab - ﬁgabr Tdfcd - ;gab(-@crd)f 4 D, DK + gabDK

2 3, A
- ;T(a@b)K + ;gabr DK — ﬁgabKv (251)
0=Q4=Df’ — Z.K, (252)
2 2
0=0Q" = -9, 9,1 — ;ra%,f“b + 0K + —r' .. (253)

From this point onward, we follow the steps outlined in Section 2.8.2, with the necessary adaptation to
Qap- The first objective is again to rewrite Egs. (252)-(253) into three differential equations in terms
of only K and v and to decouple them using the ZM function. We keep the calculations in terms of
the dimension d and only insert d = 3 at the end.

The first equation in the new system is obtained by taking the trace of @3, and is the analogue of Eq.
(154). Making use of the trace condition, this yields

.9 A 2 2
0=Q% =0K + =r" 2K — 3K — 571" fay, — =(Zera)
a r 7"2 7"2 r
. on. 2 oM

The second and third equations in our system are constructed by taking combinations of Qgp. Un-
fortunately, at this point we cannot make use of relation (157) due to the fact that Eq. (156) cannot
simply be extended from two to three dimensions. Due to the additional degrees of freedom in the
Riemann tensor, the three-dimensional analogue of Eq. (157) must include extra terms, though their
exact form remains unclear?*. This presents an inconvenience for which we currently have no solution.

23In the script 5D_PERT_COORDINATES.NB we developed a method to manipulate the equations, allowing the brave
reader to give it a try.
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Continuing without this simplification, the first combination is expressed as

a,.b

rr

A+1  f(r)

0=/(reQ - 7’ Qay = - (r°Defab = 1% DpK) — [ r2 * rQ] Tarbfab

+ @W%K - %f(r)K - @(%m)f”i ~ 11" DD i
+ 10 900500 1 e s + 2 502 7a, (255)
We make use of the equivalent of Eq. (164), i.e.

A A 4M ~
rortOf, = Ov + — v+ 0" Z.K) + 2rr P, DK
T

aM aM 2M?
+ rTra@aK + TTf(r)8ZH4 —+ v Hs, (256)
and rewrite Eq. (255) in the same manner as in Section 2.8.2:
1 1 2M 1 M M
0=—1"Zv— < | A+2+—{d—-4)|v—- )\+7—78— Do K
r r2 dr r r dr

f(r)
2

A A D 2M M M
— ﬁf(T’)K + OK + §|:|U + §|:|(7’ .@,IK) + TTf(’I")aZH4 + ng <1 — > H5. (257)

r

This is the second equation of our new system.

We finally make the following combination:

2 1 A 2 2
0= ;TaTanb + 1 2,Q4 = —;TaTbDfab - ;TC(-@c@arb)fab - ;Tc(gaTb)gcfab

+ 20+2) 8M(d-2) rr° fop + f) OK +1°9, (GK)
r3 dr r
+ % <5M -2 >\> G K + 21 D, DK + %f(T)K' (258)
7 r 7 7

To simplify this expression, we make use of the following observations:
e We make use of Eq. (256) to rewrite the first term.

o We cannot make use of Eq. (30), and must evaluate in MATHEMATICA the second and third

term?® as
2 a4M aM
- ;TC(QCQaTd)fad =1 (r)(Ho — Ha) = T (r)Hs, (259)
2 2M
- ;Tc(@ard)@cfad = Tigf(r)a'r‘HS- (260)

240One might argue that Eq. (21) gives a straightforward extension for d = 3, namely

17
L%ab = ggab
However, this is only valid for the unperturbed background spacetime. In Section 2.8.2 we were allowed to use Eq. (156)
because it holds in general for a two-dimensional manifold.
25Indeed, by taking this approach, we have strayed from the covariant method. However, while it is possible to retain
these terms in their original form, expressing them in terms of Hs allows us to explicitly recognize them as “new”
contributions, which we prefer.
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e Moreover, we rewrite
Dy (GK) = g1 (2eDa DK + Ry PaK)

4M
_ gbc.@c(ra-@b-@af() _gbc<@ r )@ DK+ — a3 (gabg gggg)‘@d[(

C a (& a be 4M a
=" D. D (1 D K) — gD, (Dpr®) Do K) — ¢*(Der®) Du Do K + o —— (1 =dr'Z,K
. 2M 4M
=0(r*"2,K) + 77%@ K —2(2°r) 2.2, K + s (1= 7.K
A 2M 4M A 9
=00r*2,K) — —DK s (1 — 2) P, K + ?@K. (261)
In the third line we again used MATHEMATICA to evaluate that
2M
9"(D-Dyr) = *TTTQ, (262)
and we used that M M
(2"r")2.2,K = 0K — 02K (263)
r r

in the fifth line. In the Schwarzschild limit, the third and fourth term in Eq. (261) are zero,
yielding exactly Eq. (166).

Applying these results to Eq. (258) finally yields

0—1ﬂv+23{)\+22M<34>}v+1<14M>EK
r r T r

d r
AM (5 . 2X
— (d - 1) " ZaK + 3 f(r)K + 62K - —f( )0-H,y
2M 2M 3M
+ 5 ()0, Hs (2 - T) H;. (264)

In the Schwarzschild limit, this correctly reduces to Eq. (167).

Combining our results, we see that we have obtained a system in terms of the variables v, K, H; and
H5Z

2 2 oM

0=0K ~ 5K~ Sv+ 5 [(r)Hs, (265)
1 2M 1 M 8M

0:—7'@11—[)\—&—2+(d 4)]U—T<x\+7r —8dr>r“@aK

Az (r )K+%DK+ QD v+ 2[1( "D, K)+—f( )5ZH4+%3 (1—];4) Hs, (266)

:—va—i- )\+2—% 3—é v+} 1—ﬂ DK—F% -—1)r"Z,K
r d r r d

2 2M 4M 2M 2M 3M
+ ﬁf(r)K + T—Q(?EK - T—3f(r)82H4 + Ff( r)0rHs — (2 - ) Hs. (267)
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Eliminating v in favour of Wy gives us the five-dimensional equivalent of system (169):

A 6 M 2A 2M
A 1 M? + 6Mr(X\—2) — 2\r?
0= |- A+ )+3O +6Mr(A—2) —2Xr D U
r? rf(r)
1 AM 8\ 6M 6M?2 4 AXA+1) =
+7”2|:/\(A+1)+7’<7_d>+7'+ 7"2 (1—d>:|‘I’ZM_2TD\I/ZM
— A 1. 1 M M
O A dngegmy Lo M (50 8) L ™M eg i
2 2 r T d r3
1 AM 8 3M  3M? 8
+ [A(/\+1)+r<7—d)+r+ > (5—d>}[(
2M M M
+—5 f(r)o.Hy + — (1 - ) Hs, (269)
T T T
A A 2 6 M
0= 7’[“72(>\ + ].)D\IIZM + T73 <)\ + 7") ()\ + 1)Ta@a\I]ZM
2 M 6M? 1 MY\ -
10M . 2 M 8\ 3M2 (8
+ (-2 K - 5 [A(A+1)+r <3+d—)\> + (d—:s)] K
2M 4M 2M 2M 3M

The fact that it is not possible to use simplification (30) proves to be a significant obstacle. In four
dimensions, this simplification allowed us to eliminate K from the system, leaving a single equation in
terms of Wy, namely the Zerilli equation. However, in five dimensions, it turns out that K cannot
be completely removed from Eqs. (268)-(270) due to certain terms in the second equation that resist
simplification or convenient reformulation. As a result, the covariant approach used in Section 2.8.2
does not produce the desired outcome in five dimensions.

Eqgs. (268)-(270) do not encapsulate all the information originally present in the even-parity pertur-
bation equations. For completeness, we conclude this section by compiling the equations that contain
indispensable information about the perturbation equations.

First, we observe that Egs. (268)-(270) are formed from the combinations

QZ = gaanb = _%Qtt + f(r)Q'r'r + sza

Taerab = TTTTQTT = era

therefore incorporating only information from the trace part of Qgup, i.e. Q¢, @ and Q... To account
for the missing information, we must also include the components Q. = 0, @Q;, = 0, @,. = 0 and
Q. := @, = 0. To this end, we evaluate the tr, tz and rz components of Eq. (251) and the
z component of Eq. (252) in the script 5D_PERT_COORDINATES.NB. We find that it is relatively
straightforward to combine Q. = 0, Q¢ = 0 and @,, = 0 into one second-order, semi-algebraic
equation (with only r-derivatives) in terms of the variables Hy, Hy, He, H3 and H, if we assume
an exponential ¢- and z-dependence. The explicit calculation is worked out in the script and not
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particularly illuminating to present. We state the final result:

M M i [k?2 —w? MEK> XX+1 2M M
0= f(r)0,Ho + ~5 Ho + —5 f(r)0, Hy + — i LA 2 M) g
r2 wr? w 2 r r2 73
f(r) M M ) 1[k2+w? Mk 2M
2 OrHz + r2 H: k:wer(T)arH3 w 2k r + kr3 F(r)| o Hs
M w?r?
—— 2\ + 1)+ kP — =—| H
s 20D = 5
i [k2—w? ME2 X+1 2M 3M
_k[ et —ﬁ(xu—)}m (271)
1 2M
QZ = 8ZK — matHig + f(’l")aerl + TTH4 + 3ZH5 (272)

Finally, we observe that the ZM function encodes information from both K and H; when we express
v in coordinates:

r v r W} , (273)

o= 551 K+ ) - v [K”“‘) A

This means that in total our new system consists of the six variables K, Hy, H1, Ho, H3, H4 in six
equations, Eqs. (268)-(273). Therefore, all information from the original system, Eqs. (145)-(148), is
retained.

3.9 Overview of variables in four and five dimensions

We have seen that keeping track of the number of (independent) variables and equations in the odd-
and especially the even-parity systems of perturbation equations can be challenging. To conclude this
section, we provide a comparison of the number of variables, degrees of freedom (DOF), and equations
in four and five dimensions.

The initial number of variables in four and five dimensions, that is, the total number of modes present
in the spherical harmonics decomposition, is presented in Table 2.

Schwarzschild Black string
Odd-parity h(), hl, hQ (3) ho, hl, hg, h3 (4)
Even-parity | Ho, H1, Ha, jo, j1, K, G (7) | Ho, Hi, Ha, H3, Hy, Hs, jo, j1, j2, K, G (11)
] Total variables \ 10 \ 15 ‘

Table 2: Initial (number of) variables for both the Schwarzschild (4d) and black string (5d) spacetimes,
for both parities.

We can verify the total number of variables by considering that the perturbing metric, 7v,,, is a

symmetric rank-2 tensor. In a d-dimensional spacetime, such a tensor has
d(d+1
% (274)

independent components.

We have seen that the gauge vector =, removes d variables, since it has d independent components.
Additionally, the Bianchi identities (which we did not discuss in this thesis) impose d constraints on
the vacuum Einstein equations, thus removing another d variables. Therefore, we are left with

d(d+1)

;— —2d (275)
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independent variables, also called the physical (or dynamical) DOF. This is also the minimal number
of equations required to describe the perturbations. In four dimensions, the number of dynamical
DOF is therefore two; Wrw and Wz, Both are tensor modes (on M*, which should not be confused
with the spherical harmonic tensor modes on §2) and fully describe gravitational waves emerging from
perturbations of the spacetime. We confirmed this in the first part of this thesis, when we derived that
the perturbations are fully described by two decoupled wave equations (the RW and Zerilli equations)
in terms of these functions. Based on Eq. (275), in five dimensions we expect to have five dynamical
DOF, which in this case will likely be two tensor modes, two vector modes and one scalar mode?5.
The (expected) DOF in four and five dimensions are summarized in Table 3.

Schwarzschild Black string
Odd-parity \IJRW (1) \I/Rw, hg (2)
Even-parity Uy (1) Uy, vector mode, scalar mode (3)
Dynamical DOF | 2 \ 5 \

Table 3: Dynamical DOF for both the Schwarzschild (4d) and black string (5d) spacetimes, for both
parities.

In Section 3.7.3 we have seen that indeed the five-dimensional odd-parity perturbations are described
by the independent modes Urw and he. While we have not been able to reduce the even-parity sector
to three variables, we have reason to expect that it decouples into three independent equations, one
in terms of a tensor mode, one in a vector mode and one in a scalar mode. If isospectrality were to
hold in the black string spacetime, it would be most logical that it is proven by relating the odd tensor
mode to the even tensor mode and the odd vector mode to the even vector mode, both via a proper
Darboux transform, while the scalar mode fully decouples. The tensor mode is likely to be the ZM
function, but it is not strictly necessary that it has exactly the form of Eq. (273). The specific vector
and scalar modes involved in these decoupled equations cannot be determined with the information
we currently have. The precise identification of these modes would require a more detailed analysis of
the decoupling of the perturbation equations in the even-parity sector.

26 Credits to my supervisor B. Bonga for pointing this out in one of our discussions.
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4 Conclusion

We have provided a comprehensive and self-consistent review of metric perturbation theory of the
Schwarzschild spacetime. Scattered information from the literature was combined, and we verified the
well-known result that the RW and Zerilli equations are related by a Darboux (or Chandrasekhar)
transformation. We have also shown that this transformation implies that the transmission and reflec-
tion coefficients of the Darboux-related RW and Zerilli potentials are equal, and hence that the QNM
spectra of both potentials coincide. The purpose of this was to establish the groundwork for exploring
whether isospectrality would hold in a five-dimensional context.

In the second part of this thesis, we extended the metric perturbation theory framework to the black
string spacetime, a five-dimensional counterpart of the Schwarzschild black hole. This was achieved
by introducing an extra spatial dimension, independent of the coordinates. By incorporating this
additional coordinate into z® (thus transforming M? to M?3), we anticipated that the formalism
would seamlessly adapt to perturbations of this five-dimensional spacetime, introducing only a modest
increase in complexity. Indeed, we found that the decomposition into spherical harmonics could be
straightforwardly extended by adding new variables into the even-parity modes f,; and j,, and the
odd-parity mode h,. In the RW gauge, we were able to eliminate four even-parity mode components
(jo and @) and one odd-parity mode component (hs), analogous to the four-dimensional case. From
there, we calculated the odd- and even-parity vacuum FEinstein equations from the linearized Ricci
(and Einstein) tensors, which we could treat separately. These systems of equations could then be
decoupled in two ways: either by working in coordinates and expressing the system as a set of coupled
second-order PDEs, or by employing a covariant approach with the RW and ZM functions in their
covariant form.

For the odd-parity case, we applied both methods and, due to the manageable number of perturbation
equations and modes, were able to follow the same steps as in four dimensions without encountering
significant difficulty. Interestingly, instead of deriving a single RW equation solely in terms of the
RW function, we ended up with two coupled equations involving both the RW function and hs. The
covariant approach led to the same conclusion. The structure of the equations allowed for decoupling,
but this process required a few non-trivial steps. By rewriting the two equations in vector-matrix
form and assuming an exponential ¢- and z-dependence for the RW function and hs, we were able
to construct a diagonal matrix D with relatively simple eigenvalues on the diagonal. We discovered
that the matrix A = P~'DP decouples the system, allowing us to write down two fully independent
wave equations for the RW function and hs. This hinged on the fact that D and P commute, which
seemed like a mere coincidence, as there is no obvious a priori condition (that we know of) that would
guarantee such commutation.

In the even-parity case, the introduction of new variables and perturbation equations presented sub-
stantial challenges. Decoupling the system of vacuum Einstein equations in coordinates proved to be
exceedingly difficult due to the large number of equations (10), variables (7), and the numerous mixed
derivatives involving the z-coordinate. Although we were able to reduce the number of variables from
seven to six by eliminating Hs in favour of Hy and Hs (thanks to the new trace condition) this sim-
plification did not significantly ease the process. An attempt was made in the MATHEMATICA script
5D_PERT_COORDINATES.NB to make the equations semi-algebraic by introducing an exponential ¢- and
z-dependence, but fully decoupling the equations remained a futile attempt. An effort to decouple the
system covariantly by following the detailed four-dimensional calculations in Martel [9] also did not
yield the desired result.

It is clear that we have not been able to definitively prove or disprove isospectrality of the QNM fre-
quencies of black strings. While the formalism we used is well-suited for extending the submanifold M?
to higher dimensions, the calculations have shown to become considerably more complex when adding
just one extra dimension without any dependence on the existing coordinates, which is particularly
evident in the even-parity case. However, we do not rule out the possibility that isospectrality could
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hold in the black string spacetime. We anticipate that a proper decoupling of the even-parity system
will lead to three independent equations: one for Wy, one for a vector mode, and one for a scalar
mode. It may be possible to relate the odd tensor mode to the even tensor mode, and the odd vector
mode to the even vector mode, with the the scalar mode decoupling entirely.

Throughout this thesis, we have refrained from making any assumptions regarding the type of per-
turbations we considered. In hindsight, one could propose that it is possible to focus on less general
perturbations. For instance, Gregory [1] considers only spherically symmetric perturbations, which
involve no cross terms with the angular coordinate in +,,. Such a simplification makes it impossible
to prove isospectrality, as the odd-parity sector of the spherical harmonics would trivially vanish (see
the footnote on page 39).

A potentially simpler approach could be to consider radial perturbations, i.e., perpendicular to the
string’s axis and therefore independent of the z-coordinate. While this might simplify the perturbation
equations, it makes us blind to potentially interesting effects that could arise from perturbations along
the z-direction. Even if one were able to prove isospectrality in this restricted case, it is quesionable
whether this is actually a useful result. Real perturbations of black strings will almost never be fully
independent of the z-direction. Therefore, demonstrating isospectrality for a very limited subset of
perturbations would not serve as conclusive evidence for isospectrality as a general property of black
strings. In this light, we believe it is crucial to avoid making simplifying assumptions about the types
of perturbations considered.

We should also acknowledge that we did not make use of the Bianchi identities in our calculations.
These identities impose additional constraints on the perturbation equations and could potentially
assist in decoupling the even-parity system of vacuum Einstein equations by reducing the number of
independent variables. For future investigations, we recommend considering the application of the
three even-parity Bianchi identities, as described by Martel’s [9]. They may be a valuable tool for
simplifying and further advancing the analysis of the even-parity sector.

It is also possible that a different function, other than the covariant ZM function given in Eq. (142),
decouples the five-dimensional system. However, the literature on systematic methods for identifying
such a decoupling function is quite limited, and finding one may require a challenging process of trial
and error. (see [14] for finding the Zerilli function in a slightly different context).

In some last remarks, we would like to acknowledge that the formalism of metric perturbations is
limited by factors that we have not touched upon in detail. While these limitations do not directly
affect the proof of isospectrality for a given spacetime, they are important to keep in mind. For
example, as noted in Section 2.5, in the spherical harmonic decomposition restricts the sum over the
mode label £ to £ > 2, since £ = 0 and ¢ = 1 modes are non-radiative and require special treatment.
Additionally, we have worked within the framework of linear perturbation theory, which may overlook
physical phenomena present at higher order.

Decoupling the even-parity perturbation equations of the black string may hold the key to proving
isospectrality in this five-dimensional spacetime. For now however, the answer remains elusive.
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B APPENDIX: SPHERICAL HARMONICS

A Appendix: Notation conversion table

We chose to adopt a slightly different notation than Martel [9] and Martel & Poisson [21], of which we
make use extensively in this thesis. In order to translate between this thesis and their works, we list
the most important notational differences in the table below.

] Quantity H This thesis \ Martel [9] \ Martel & Poisson [21] ‘
Partial derivative 0 , 0
Covariant derivative of g, \Y% ; Not defined
Covariant derivative of g 9 : A\
Covariant derivative of Q4p D | D
Perturbation metric o R Duv
Even-parity field fab Dab Rab
Even-parity field Ja Qa Ja
Vector harmonic Ya Za Ya
Vector harmonic QapY Uap QapY
Tensor harmonic YuB Vag Yan
Tensor harmonic XAB WAB XAB

Table 4: Notational differences for (covariant) derivatives, perturbation quantities and spherical har-
monics. Martel’s derivatives are written as subscripts. We chose to adopt the same notation as Martel
& Poisson for the spherical harmonics.

B Appendix: Spherical Harmonics

Spherical harmonics are a special type of functions defined on the surface of the two-sphere (S?).
They come in three types (scalar, vector and tensor) which refers to the way they transform under a
coordinate transformation on S2. As their name implies, scalar harmonics are invariant under these
kinds of transformations, whereas vector harmonics change in accordance with the transformation
rules of a vector and tensor harmonics in accordance with the transformation rules of a tensor. Every
function on the sphere can be expressed as a sum of harmonics since each type forms a complete and
orthonormal basis on S2.

The spherical harmonics can also be divided according to their parity. There are two parity modes:
even and odd.

e Even-parity modes are modes that are symmetric under inversion, meaning
Y (=0, 0) = Y™ (0, ¢). (276)
This is true if they transform as
Yo (r— 0,7+ ¢) = (-1)'Y""(0, ¢) (277)

with ¢ an integer number.

e Odd-parity modes are those that are antisymmetric under inversion, so
X (=0,¢) = =X""(0, ). (278)
This is true if they transform as

X1 — 0,7+ ¢) = (=1)FLX"(0, ¢). (279)
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Here ¢ and m are integers, with £ > 0 and —¢ < m < /. It is well-known that the { = 0 and ¢ = 1
mode are non-radiating in the context of black hole perturbations, and therefore £ > 2 in this thesis.

The division of harmonics by their parity is of great convenience in the study of linear perturbations
in a spherically symmetric background, where they are naturally prohibited from mixing. In this
appendix we will explain the basic properties of spherical harmonics needed in our study of black hole
perturbation theory. This is a summary of the relevant information from Martel’s Appendix A [9].

B.1 Scalar spherical harmonics

Scalar spherical harmonics are the “usual”, well-known functions Y™, and are defined by the eigen-

value equation
DADAY'™ = —4(¢ +1)Y™, (280)

These harmonics can be used to decompose a scalar function S(z4) on S? as

S@?) = sem Y (a?). (281)
lm
The coefficients s, can be found using the orthonormality relations for spherical harmonics (see [9]).

B.2 Vector spherical harmonics

Vector spherical harmonics come in two flavours; even parity, defined by
Yim™ = DY, (282)

and odd parity, defined by
X = —e,BDpy*m. (283)

Here, €4 is the Levi-Civita tensor on S2. It is defined via the Levi-Civita symbol 45 as [37]

€EAB = \/|det QAB|5~AB = ( 0 S189> , (284)

—sind
such that the only non-zero components are eg4 = —c49 = sinf. Since €, is totally anti-symmetric
(esg = —€pa), we have to be careful with the order of the indices in this tensor., as opposed to

symmetric matrices like g, and Q24p5. The Levi-Civita tensor obeys
DcsAB = 07 (285)

which can be seen by writing out each of the individual components.

Any vector function V4 (2?) can be decomposed in vector harmonics as

Va(zP) = Z {vem Y™ (25) + wem X5 (2P)} . (286)
Lm

The coefficients vy, and wy,, are again determined by the orthogonality relations. Vector harmonics
of even parity and odd parity are always orthogonal, since [21]

/ YA X4 A0 =0, (287)

where the bar indicates complex conjugation and dS) := sin #dfd¢ is the volume element on S2.
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B.3 Tensor spherical harmonics

To describe the perturbation component y4p in this thesis (a symmetric rank-2 tensor with three
independent components), we need three rank-2 tensor spherical harmonics. We can describe the
trace (scalar) part by Q45Y ™, which has the transformation properties of even-parity modes. The
non-trace part of y4p can be described by two distinct combinations. The even-parity combination is

Ll+1
Yim .= |DsDp + uQAB ym, (288)
while the odd-parity combination is
1
X = = (es“Dp +e“Da) DY (289)

Together they form a complete and orthogonal basis for symmetric rank-2 tensors. This means that
generally one can decompose any symmetric tensor T4p(z¢) as

Tap(x?) =Y {V"QapY™™ + WYLE + U X5} (290)

lm

The functions V™, W™ and U™ again satisfy orthogonality relations. The harmonics themselves
are orthogonal (but not orthonormal) with respect to each other:

/Ye‘anXﬁ?/dQ =0, (291)
/Ylﬁ?QABme/dQ =0, (292)
/ XY™ d = 0. (293)

B.4 Identities

In this section we derive some properties that are needed in the derivation of the perturbation equations,
providing short clarifying derivations. In these derivations we will use the square bracket above two
covariant derivatives,

L
DaDg, (294)

to indicate that they are commuted in the next step. We use Egs. (26)-(28) and the Riemann tensors,
Egs. (18) and (19), whenever we perform such a commutation.

The identities for Y{™ are rather straightforward to prove, since Y™ is a scalar function. Therefore,
the covariant derivatives working on Y™ may freely be commuted. We have

DpY ™ = DpDaY"™ = DyDpY"™ = DAYE™, (295)
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which means that the tensor object DBYﬁm is symmetric. Eq. (280) furthermore implies that

DAY™ = DAD, Y™

c= (L + 1Y, (296)
DADBY[™ = Dy (—L(¢ +1)Y"™)
=l +1)YEm, 297
A

[
DEDpY{™ = DED Y™
= DADBYS™ + RB , ,CYVE™
= —L(L+ 1)YL™ + (280G — QPCQup) Y™
=1 -0+ 1) YLm. (298)
By a similar analysis for the odd-parity vector harmonics, we obtain
DAXY" = — "D DY =0, (299)
DEDpXim™ = - ,“DPDpYE™
= —e C[L =L+ ] YE"
=1 — L+ 1)) X5, (300)
DPDyXp =QP°DeDy (—eg"Dpy'™)
L
= —“"DoDADRY™
= —e“% (DsDcDEg + Royg" Dr) Y™
= ~D (£2EBePEY™ ) — 7 (QopQff — QEQar) DpY ™™
— _%DAYZWL + EFADFYEm
= —e ' Dpy‘™

=X, (301)

Here we used that the derivative of the Levi-Civita tensor is zero. For the first and third identities we
also used the anti-symmetry of the Levi-Civita tensor, which means for instance that contracting 4%
with the symmetric tensor quantity DaDpgY ‘™ gives zero.

For the tensor harmonics, one can show using Eq. (288), (289) and (280) that

0Py LE =0=0"" X%, (302)
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C APPENDIX: COVARIANT DERIVATIVES OF (CO-)VECTORS AND
(CO-)TENSORS IN THE M? x S? SPLIT

C Appendix: Covariant derivatives of (co-)vectors and
(co-)tensors in the M? x S§? split
In this thesis we make use of covariant derivatives of (co-)vectors and (co-)tensors in terms of quantities

on M? and 82. The expressions below can be found in a different notation in [9], but for completeness
we include them here in our notation.

We start with the first-order covariant derivatives. V,v” has components [39]
Vb = 9,0° + cmvc = P0°,
1
Vol = 0,07 + FfAvA = 9,08 + Zr 0P,
T

303
Var® =040 + TY 5 VB = Do’ — rrbQapo?, (303)

1
VavB = 09408 + T 0 + T8 v¢ = DyoP + ~r.650°.
r

We used here that 2, works on v® as a scalar, as does D4 on v?, such that we express the final

results in terms of covariant derivatives instead of partial derivatives. Similarly for the co-vectors, the
components of V,vg are
Vavp = aa'Ub - F(Clbvc = -@avba

1
A
Vaoup = 04vp —'ygva = ZavB — ~TaVB;

. (304)
Vavp = 0avp — Tvp = Davy, — ~TevA,

Vavg = 0avp — FngC — I gve = Davp + r7°Qapve.

The same procedure also applies to higher derivatives and derivatives of higher-rank tensors. First-
order covariant derivatives on a rank-2 tensor t*¥, are

Vatbc _ gatbc’

1
Vat’® = 2,7 + ;ratbc ,

2
VatP¢ = 9,459 + ;ratBC,

305
Vat? = Dat® — ¢°rt*BQap Dur — ¢ rrat®Qap, (305)
1
VAtbC = DAtbC + *T’a(SACtba - gbaTTatBCQAB,
r
1 1
VatBC = DatBC + 26,48t 1 + Zr 64°tP°,
r r
where 5§45 is a Kronecker delta. On a co-tensor 1., We obtain
vatbc = @atbca
1
Vatoe = Datve — ;Tatb(]a
2
Vatpe = Zatpc — —TatBC,
" (306)

1 1
vAtbc = DAtbc - ;rbtAc - ;TctbAa

1
Vatse = Datoc — ;rbtAC +rr*Qactpa,

Vatec = Datpe +rr*Qaptec + rr7*QactBa-
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TENSORS

The first-order derivatives are not needed in the calculations of the perturbation equations, but are
used to calculate second-order derivatives of rank-2 tensors. On a tensor with two lowercase Latin
indices we obtain

vcvdtab = gcgdtaba
Te 4 2
VaVitay = DaPDetay — " Datap — GOV ;T(a%qtb)m
2
chAtab = vAvctab - ;(—@(amc\)tb)Av (307)
2 2 2
VeVate = DpDatap — ;r(aDBtb)A - ;r(aDAtb)B + rjrarbtAB
2
+77°Qan <@ctab - rr(atb)c> )
and on a tensor with one lowercase Latin index and one capital index we find
2 1 2
vcvbtaA = @c@btaA - 7T(c@b)taA -~ 9c"’b — —1pTe | taa,
r r r
2 Tq 3 c Ty
VBVitaa = DpDotaa — —1oDptaa — — | Dotap — —rotap | +17°Qanp (-@btac - *%a) ;
r r r r
1
ViVBtea = DpDytan — ;(@bra)tAB +1Q4B(Zo7)tac, (308)
2 Ta
VcVptaa = DeDptaa — ;TaD(Ct\A|B) + (QBc@btaA - 79,43151;0)
b 2 2
+rr° | 2QacDpytas — ;QBCT(atb)A - ;QACT(atb)B :
Finally, on two lowercase capital indices we obtain
4 6 2
VioVatap = DoDatanp — ;T(b@a)tAB + gTarstan — ;@bratABa

3 2
VeVatap = DePatas — ;raDCtAB +2r"Qc 4 <9at3)b - TTatB)b) ,

(309)
VoVetap = DeDatap + 2r(Zar’)Qoat s,
VpVctap = DpDctap + 2rm*(QcaDptpya + QpaDctpya) — 2r'ra(Qpateye + Qoptan)
+ QTQTGTbQD(AQB)Ctab +rr°QepDatas.
Note that the round parentheses indicate symmetrization and | - | means the index - is left out of the

symmetrization process.

D Appendix: Explicit calculation of Linearized Ricci and Ein-
stein tensors

In this appendix, we will derive the covariant components of the linearized Ricci tensor and Einstein
tensor in terms of the dimension d = 2,3, where d = 2 corresponds to the Schwarzschild case, and
d = 3 to the black string. We make use of the fact that the odd- and even-parity sectors of the spherical
harmonic decomposition, Egs. (84) and (105), are the same in four and five dimensions in the RW
gauge (in four dimensions, the RW gauge allows us to remove the modes hs, j, and G, while in five
dimensions we can remove hs, j, and G).
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Starting with the odd-parity perturbation equations, we insert the spherical harmonics expansion of
Eqgs. (84) into Eq. (52), which gives

M&“Ha%&w+gm&w ST T~ Uwhmm+ v Do (7 + F)
@ %WJr 5,3 (ra%yMJrrb@ W) (rary — T@arb))*%/
= L Du (2 + 2

2 2
=33 L (Duhy + Doha) DT
=0. (310)

In the first step, many of the terms were directly zero by virtue of Eq. (84). The last step gives zero
because of property (299). Similarly, Eq. (53) becomes

oty 1 1 1 (o) N1 - N
(5R((”§1d) — 5DB (@m%— @a%—k rm%) —3 (D YaB — @m@aﬁg) - (raZmVE — rmZaVE)
1 1 1
— 3 (raTm +17Parm) Vg + ﬁDM (DYam — Davvas) + ﬁ@a (DM)%[ - DB%)
1
37a (DM)%[— DB%)

[ 1 10 T, b 1
= —iDha—i—i@ _@ahb—;ra@ hb+ r@hb——rar hb—fhb@@'f‘

1 1
+ {2haDADB] Xq - {zhaDADA] Xg
1

= —th + = @ Qbhb—fra.@bhb—i-f?“ Dahty — —5rar’hy
_ (e+1) 2M
—_— — b —_—
rhb.@a@ r+ ( o+ ng) ha] Xpg. (311)

In the last step, we commuted the covariant derivatives in the second term as

D°Dohy = ¢*° D. Dol
= ¢* (ZuDehiy + Reogpah®)

4M
= @a@bhb + mgbc (gcbgad - gcdgab) hd

4M
-9 @b
= Za hb + T3dha7

and for the last two terms we used properties (300) and (301) from Appendix A. The d’Alembertian
o) .
operator [ is to be identified as O if d = 2 and O if d = 3.
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Finally, Eq. (54) becomes

o 1., 1
5RAgd) Qap |:7‘7‘a@b (}fd{— 39 b%) + (rary + Tgﬂb)}}”ﬂ — fDADB)V:/

1 1 1w
+ 5% (Dav + Dpy) + ;raQABDm“ i D s+ - DMQW DADBW

1 1 2
+ ;Ta@a <%4’B’ 2QAB;¥/%> - ﬁTaTa (M QQAB)/%[{)

1 1
5%, (Davg + Dpvya) + ;?"aQABDM’YaM

2
1 1
= igaha (DaXp+ DpXa) + ;TGQABha%
1
= =574 (epDa + 4 Dp) DpY
= [Z"ha]X B (312)

We continue with the even-parity case. Inserting Egs. (105) into Eq. (52), we obtain

even 2 w1 m 1 1
SR = g ca,,+ Sl = 520907 = 550 Darvar + 55 Dt (@a%+ %%’)
1 1
-@ -@b'YM + — 273 (Ta-@b'YM +7’b-@a7]vj) A (T(Lrb T-@arb) 71]\\44
= Do (DS + Duf] — D" fu) Y + ;rm (Dof + Dufi™ — D™ fur) Y
1 m 1 M 1 20M
— iga@bfmy — TﬂfabD DMY — ﬁ@a@b (7’ QJ\/]K) Y

13 (raZo (PIK) Y + 100 (FPO3K)Y) — % (rary — r%amy) (PO K) Y

2
1 1 1

= (390 oI+ Dl = 7 ) & L (RS 4 Dufy? = T ) = TS
E(Z +1)

1
fab — 2 @l.@b (TZK) + 3 (ra@b (’I“QK) + 10D, (’I“QK))
- % (rary — rPars) K} Y

8M

%)
Bdd—1) (dfva — goafim) + Da@m f3"— O fap

e(u 1)

1
- 5 [@b@mf;n +

2
‘|’;Tm(~@bf(:,n‘i’-@afgn*-@mfab)7-@61-91).]7:;+ fab

2
— (0 ZuK — a2 K) ~ 2%%[(} Y. (313)

In the third step, the covariant derivatives in the first term were commuted according to Eq. (26).
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We also have

S — Lo (0~ ot k) - (B 9,) - ()

1 1 1
) (Tars + r%ﬂ“b)ﬂ/g‘F ﬁDM (DAt = Dvioyar) — 55 %0 (Duvs — Dpag)

2r
5Ta (Duvs — Dpvat)

1
Y + ﬁ% (Du(rPKQYY) — Dp(r*KQy1Y))

1 1

- §DB (gbf}z) - gafll; + Trafl?>
1

- 3T (Du(rPKQYY) — Dp(r*KQy1Y))

1 1 1
5DB (%fb Duft + rafb> DY — 272.%1(13K)DBY + ;raKDBY

1
— 5 |98 = s+ Lot} - 2K | . (314)
Lastly,
(even) _ 1 ab,m 7 ab| 1 a
OR, =QaB |T7e Dy 2g )+ (rary + 17 Dars) Y 2DADB'ya

1 1w 1
+ 5%; (DA)%/—F DB)&/) + TGQABDMW— 5 UvaB + DMC'AB 5.3 ~—DaDpyit

1 1 2

1 1 )
=QOup {rra@b <fab — 2g“bf,’ff) + (rary +1Pary) f“b} Y — ingADBY — — 0O (*K)QapY

N |

1 1
+ 5,3 Du [Dp(rPKQYY)+ Da(r*KQYY) — DM(r?KQapY)] — —DADB(TQKQ%Y)
2
+ ra.@ (rPKQagY — fQABrQKQMY) oo (rPKQapY — fQABerKQMY)
T
1¢
=QOup {rra@b (fab — 2g“bf,’:f> + (rary +1Pry) fab} Y — ingADBY ~5 D (r?K)QapY
1
+§K(DADBY—|—DBDAY—QABDMDMY)—KDADBY (315)
1 1w 1
= [rra@bf“b — arrb“@bf;l" + 1oty [ + 1Dy O — 3 O (r?K) + §Z(€ + 1)K
1 . 1.,
+ Zf(f-f— l)fa:|QABY— §faYAB~ (316)

The Einstein tensors are calculated in a similar manner but require significantly more work. For these
we use Eqgs. (55)-(57) and expand them in spherical harmonics. The multipole expansions for each
individual term can be found in Appendix B.2 of Martel [9], which can be translated to our notation
using the notation conversion in Table 4. We merely state the final results, of which we only need the
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D APPENDIX: EXPLICIT CALCULATION OF LINEARIZED RICCI AND EINSTEIN
TENSORS

even-parity part in this thesis:

(even) c 1 cd 1 c 1w ja c
0Go ™ = | 2P0 La) = 59009 Daf*" = 5Pa D[ = 50 fab = gap O f7)

+ ;Tc(-@(b < = gabZaft) — %Tc(gcfab — g 2.f3) + é(é;l) fab

- %gab (ifcrdfcd + %(Qcm)fc{i + 6(6:2_ D f§> — Zu DK + gab Ok

— %r(a@b)K + ggabrc@cK — %gab (—i(r (ﬁ)r + 1) + g(i—; 1)K> }Y, (317)
sl = L [%ffi DSyt s %K} Yo (318)
S = o [‘ﬁ 1= 22 = 200g, g+ g gy - N oy gy K] QupY

_ % FYap. (319)

Clearly, (317)-(319) are equal®” in four and five dimensions up to the dimensionality of the d’Alembertian
operator (one can check that all identities in Martel’s Appendix B.1 and B.2 hold in both four and
five dimensions since they are derived using only the Christoffel symbols, which are identical in four
and five dimensions). The even- parity part of Egs. (317)-(319) can be identified simply by the parity
of the harmonics.

27Note that e.g. fq5 does change in five dimensions compared to four, but this effect is only evident when we actually
insert the coordinates, revealing the new variables Hs, H4 and Hs.
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ADDENDUM

Addendum

In the final stages of writing this thesis, we have noticed that it was a fundamental mistake to assume
that M3 has constant curvature, and thus the validity of Eq. (195). Working out explicitly the left-
and right-hand-side of (195) shows that they are not equal (up to a factor of 3). Therefore, the addition
of a uniform spatial dimension does in fact induce non-constant curvature.

The implications of this mistake are that some of the calculations of Section 3 are incorrect. When
commuting covariant derivatives, we were not allowed to use Eq. (195) for the Riemann tensor. Inves-
tigating the components of Z,pq in four and five dimensions shows that the non-zero components are
unaffected. We therefore expect that the main results of Section 3 only differ in certain prefactors. For
example, the odd-parity master equations (245) will likely be affected only in the numbers appearing
in the potentials, while the overall structure remains unaffected. The results are therefore still useful in
the sense that they prove that the odd-parity sector can be decoupled into two independent equations,
although their exact form should be slightly corrected.
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